BDDC Deluxe for Isogeometric Analysis

Handle URI:
http://hdl.handle.net/10754/604999
Title:
BDDC Deluxe for Isogeometric Analysis
Authors:
da Veiga, L. Beirão; Pavarino, L. F.; Scacchi, S.; Widlund, O. B.; Zampini, Stefano ( 0000-0002-0435-0433 )
Abstract:
The main goal of this paper is to design, analyze, and test a BDDC (Balancing Domain Decomposition by Constraints, see [12, 23]) preconditioner for Isogeometric Analysis (IGA), based on a novel type of interface averaging, which we will denote by deluxe scaling, with either full or reduced set of primal constraints. IGA is an innovative numerical methodology, introduced in [17] and first analyzed in [1], where the geometry description of the PDE domain is adopted from a Computer Aided Design (CAD) parametrization usually based on Non-Uniform Rational B-Splines (NURBS) and the same NURBS basis functions are also used as the PDEs discrete basis, following an isoparametric paradigm; see the monograph [10]. Recent works on IGA preconditioners have focused on overlapping Schwarz preconditioners [3, 5, 7, 9], multigrid methods [16], and non-overlapping preconditioners [4, 8, 20].
KAUST Department:
Extreme Computing Research Center
Citation:
da Veiga, L.B., Pavarino, L.F., Scacchi, S., Widlund, O.B. and Zampini, S., 2016. BDDC deluxe for isogeometric analysis. In Domain Decomposition Methods in Science and Engineering XXII (pp. 15-28). Springer International Publishing.
Publisher:
Springer Science + Business Media
Journal:
Domain Decomposition Methods in Science and Engineering XXII
Issue Date:
2016
DOI:
10.1007/978-3-319-18827-0_2
Type:
Book Chapter
ISSN:
1439-7358
EISSN:
2197-7100
ISBN:
978-3-319-18826-3
Additional Links:
http://link.springer.com/chapter/10.1007%2F978-3-319-18827-0_2
Appears in Collections:
Extreme Computing Research Center; Book Chapters

Full metadata record

DC FieldValue Language
dc.contributor.authorda Veiga, L. Beirãoen
dc.contributor.authorPavarino, L. F.en
dc.contributor.authorScacchi, S.en
dc.contributor.authorWidlund, O. B.en
dc.contributor.authorZampini, Stefanoen
dc.date.accessioned2016-04-11T12:13:15Zen
dc.date.available2016-04-11T12:13:15Zen
dc.date.issued2016en
dc.identifier.citationda Veiga, L.B., Pavarino, L.F., Scacchi, S., Widlund, O.B. and Zampini, S., 2016. BDDC deluxe for isogeometric analysis. In Domain Decomposition Methods in Science and Engineering XXII (pp. 15-28). Springer International Publishing.en
dc.identifier.isbn978-3-319-18826-3en
dc.identifier.issn1439-7358en
dc.identifier.doi10.1007/978-3-319-18827-0_2en
dc.identifier.urihttp://hdl.handle.net/10754/604999en
dc.description.abstractThe main goal of this paper is to design, analyze, and test a BDDC (Balancing Domain Decomposition by Constraints, see [12, 23]) preconditioner for Isogeometric Analysis (IGA), based on a novel type of interface averaging, which we will denote by deluxe scaling, with either full or reduced set of primal constraints. IGA is an innovative numerical methodology, introduced in [17] and first analyzed in [1], where the geometry description of the PDE domain is adopted from a Computer Aided Design (CAD) parametrization usually based on Non-Uniform Rational B-Splines (NURBS) and the same NURBS basis functions are also used as the PDEs discrete basis, following an isoparametric paradigm; see the monograph [10]. Recent works on IGA preconditioners have focused on overlapping Schwarz preconditioners [3, 5, 7, 9], multigrid methods [16], and non-overlapping preconditioners [4, 8, 20].en
dc.language.isoenen
dc.publisherSpringer Science + Business Mediaen
dc.relation.urlhttp://link.springer.com/chapter/10.1007%2F978-3-319-18827-0_2en
dc.rightsThe final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-18827-0_2en
dc.titleBDDC Deluxe for Isogeometric Analysisen
dc.typeBook Chapteren
dc.identifier.eissn2197-7100en
dc.contributor.departmentExtreme Computing Research Centeren
dc.identifier.journalDomain Decomposition Methods in Science and Engineering XXIIen
dc.eprint.versionPost-printen
dc.contributor.institutionDipartimento di Matematica, Università di Milano, Via Saldini 50, 20133, Milano, Italyen
dc.contributor.institutionCourant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY, 10012, USAen
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)en
kaust.authorZampini, Stefanoen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.