Emerging experimental and computational technologies for purpose designed engineering of photosynthetic prokaryotes

Handle URI:
http://hdl.handle.net/10754/601402
Title:
Emerging experimental and computational technologies for purpose designed engineering of photosynthetic prokaryotes
Authors:
Lindblad, Peter
Abstract:
With recent advances in synthetic molecular tools to be used in photosynthetic prokaryotes, like cyanobacteria, it is possible to custom design and construct microbial cells for specific metabolic functions. This cross-disciplinary area of research has emerged within the interfaces of advanced genetic engineering, computational science, and molecular biotechnology. We have initiated the development of a genetic toolbox, using a synthetic biology approach, to custom design, engineer and construct cyanobacteria for selected function and metabolism. One major bottleneck is a controlled transcription and translation of introduced genetic constructs. An additional major issue is genetic stability. I will present and discuss recent progress in our development of genetic tools for advanced cyanobacterial biotechnology. Progress on understanding the electron pathways in native and engineered cyanobacterial enzymes and heterologous expression of non-native enymzes in cyanobacterial cells will be highlighted. Finally, I will discuss our attempts to merge synthetic biology with synthetic chemistry to explore fundamantal questions of protein design and function.
Conference/Event name:
KAUST Research Conference on Computational and Experimental Interfaces of Big Data and Biotechnology
Issue Date:
25-Jan-2016
Type:
Presentation
Appears in Collections:
KAUST Research Conference on Computational and Experimental Interfaces of Big Data and Biotechnology, January 2016

Full metadata record

DC FieldValue Language
dc.contributor.authorLindblad, Peteren
dc.date.accessioned2016-03-16T12:53:25Zen
dc.date.available2016-03-16T12:53:25Zen
dc.date.issued2016-01-25en
dc.identifier.urihttp://hdl.handle.net/10754/601402en
dc.description.abstractWith recent advances in synthetic molecular tools to be used in photosynthetic prokaryotes, like cyanobacteria, it is possible to custom design and construct microbial cells for specific metabolic functions. This cross-disciplinary area of research has emerged within the interfaces of advanced genetic engineering, computational science, and molecular biotechnology. We have initiated the development of a genetic toolbox, using a synthetic biology approach, to custom design, engineer and construct cyanobacteria for selected function and metabolism. One major bottleneck is a controlled transcription and translation of introduced genetic constructs. An additional major issue is genetic stability. I will present and discuss recent progress in our development of genetic tools for advanced cyanobacterial biotechnology. Progress on understanding the electron pathways in native and engineered cyanobacterial enzymes and heterologous expression of non-native enymzes in cyanobacterial cells will be highlighted. Finally, I will discuss our attempts to merge synthetic biology with synthetic chemistry to explore fundamantal questions of protein design and function.en
dc.titleEmerging experimental and computational technologies for purpose designed engineering of photosynthetic prokaryotesen
dc.typePresentationen
dc.conference.dateJanuary 25-27, 2016en
dc.conference.nameKAUST Research Conference on Computational and Experimental Interfaces of Big Data and Biotechnologyen
dc.conference.locationKAUST, Thuwal, Saudi Arabiaen
dc.contributor.institutionMicrobial Chemisty, Uppsala University, Swedenen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.