A nonlinear electromechanical coupling model for electropore expansion in cell electroporation

Handle URI:
http://hdl.handle.net/10754/600240
Title:
A nonlinear electromechanical coupling model for electropore expansion in cell electroporation
Authors:
Deng, Peigang; Lee, Yi Kuen; Zhang, Tong Yi
Abstract:
Under an electric field, the electric tractions acting on a cell membrane containing a pore-nucleus are investigated by using a nonlinear electromechanical coupling model, in which the cell membrane is treated as a hyperelastic material. Iterations between the electric field and the structure field are performed to reveal the electrical forces exerting on the pore region and the subsequent pore expansion process. An explicit exponential decay of the membrane's edge energy as a function of pore radius is defined for a hydrophilic pore and the transition energy as a hydrophobic pore converts to a hydrophilic pore during the initial stage of pore formation is investigated. It is found that the edge energy for the creation of an electropore edge plays an important role at the atomistic scale and it determines the hydrophobic-hydrophilic transition energy barrier. Various free energy evolution paths are exhibited, depending on the applied electric field, which provides further insight towards the electroporation (EP) phenomenon. In comparison with previous EP models, the proposed model has the ability to predict the metastable point on the free energy curve that is relevant to the lipid ion channel. In addition, the proposed model can also predict the critical transmembrane potential for the activation of an effective electroporation that is in a good agreement with previously published experimental data.
Citation:
Deng P, Lee Y-K, Zhang T-Y (2014) A nonlinear electromechanical coupling model for electropore expansion in cell electroporation. J Phys D: Appl Phys 47: 445401. Available: http://dx.doi.org/10.1088/0022-3727/47/44/445401.
Publisher:
IOP Publishing
Journal:
Journal of Physics D: Applied Physics
Issue Date:
15-Oct-2014
DOI:
10.1088/0022-3727/47/44/445401
Type:
Article
ISSN:
0022-3727; 1361-6463
Sponsors:
This research was supported by a Hubei Natural Science Foundation grant (2012FFB04701), partially supported by Wuhan Science and Technology Bureau grant (2013010501 010145) and by Hong Kong RGC GRF Grant (16205314).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorDeng, Peigangen
dc.contributor.authorLee, Yi Kuenen
dc.contributor.authorZhang, Tong Yien
dc.date.accessioned2016-02-28T07:59:47Zen
dc.date.available2016-02-28T07:59:47Zen
dc.date.issued2014-10-15en
dc.identifier.citationDeng P, Lee Y-K, Zhang T-Y (2014) A nonlinear electromechanical coupling model for electropore expansion in cell electroporation. J Phys D: Appl Phys 47: 445401. Available: http://dx.doi.org/10.1088/0022-3727/47/44/445401.en
dc.identifier.issn0022-3727en
dc.identifier.issn1361-6463en
dc.identifier.doi10.1088/0022-3727/47/44/445401en
dc.identifier.urihttp://hdl.handle.net/10754/600240en
dc.description.abstractUnder an electric field, the electric tractions acting on a cell membrane containing a pore-nucleus are investigated by using a nonlinear electromechanical coupling model, in which the cell membrane is treated as a hyperelastic material. Iterations between the electric field and the structure field are performed to reveal the electrical forces exerting on the pore region and the subsequent pore expansion process. An explicit exponential decay of the membrane's edge energy as a function of pore radius is defined for a hydrophilic pore and the transition energy as a hydrophobic pore converts to a hydrophilic pore during the initial stage of pore formation is investigated. It is found that the edge energy for the creation of an electropore edge plays an important role at the atomistic scale and it determines the hydrophobic-hydrophilic transition energy barrier. Various free energy evolution paths are exhibited, depending on the applied electric field, which provides further insight towards the electroporation (EP) phenomenon. In comparison with previous EP models, the proposed model has the ability to predict the metastable point on the free energy curve that is relevant to the lipid ion channel. In addition, the proposed model can also predict the critical transmembrane potential for the activation of an effective electroporation that is in a good agreement with previously published experimental data.en
dc.description.sponsorshipThis research was supported by a Hubei Natural Science Foundation grant (2012FFB04701), partially supported by Wuhan Science and Technology Bureau grant (2013010501 010145) and by Hong Kong RGC GRF Grant (16205314).en
dc.publisherIOP Publishingen
dc.subjectedge energyen
dc.subjectelectromechanical couplingen
dc.subjectelectroporationen
dc.subjecthydrophobic-hydrophilic transitionen
dc.subjectstrain energyen
dc.titleA nonlinear electromechanical coupling model for electropore expansion in cell electroporationen
dc.typeArticleen
dc.identifier.journalJournal of Physics D: Applied Physicsen
dc.contributor.institutionSchool of Science, Wuhan Institute of Technology, Chinaen
dc.contributor.institutionMechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kongen
kaust.authorLee, Yi-Kuenen
kaust.grant.fundedcenterKAUST-HKUST Micro/Nanofluidic Joint Laboratoryen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.