Vertically averaged approaches for CO 2 migration with solubility trapping

Handle URI:
http://hdl.handle.net/10754/600168
Title:
Vertically averaged approaches for CO 2 migration with solubility trapping
Authors:
Gasda, S. E.; Nordbotten, J. M.; Celia, M. A.
Abstract:
The long-term storage security of injected carbon dioxide (CO2) is an essential component of geological carbon sequestration operations. In the postinjection phase, the mobile CO2 plume migrates in large part because of buoyancy forces, following the natural topography of the geological formation. The primary trapping mechanisms are capillary and solubility trapping, which evolve over hundreds to thousands of years and can immobilize a significant portion of the mobile CO2 plume. However, both the migration and trapping processes are inherently complex, spanning multiple spatial and temporal scales. Using an appropriate model that can capture both large- and small-scale effects is essential for understanding the role of these processes on the long-term storage security of CO2 sequestration operations. Traditional numerical models quickly become prohibitively expensive for the type of large-scale, long-term modeling that is necessary for characterizing the migration and immobilization of CO2 during the postinjection period. We present an alternative modeling option that combines vertically integrated governing equations with an upscaled representation of the dissolution-convection process. With this approach, we demonstrate the effect of different modeling choices for typical large-scale geological systems and show that practical calculations can be performed at the temporal and spatial scales of interest. Copyright 2011 by the American Geophysical Union.
Citation:
Gasda SE, Nordbotten JM, Celia MA (2011) Vertically averaged approaches for CO 2 migration with solubility trapping . Water Resour Res 47. Available: http://dx.doi.org/10.1029/2010WR009075.
Publisher:
Wiley-Blackwell
Journal:
Water Resources Research
Issue Date:
20-May-2011
DOI:
10.1029/2010WR009075
Type:
Article
ISSN:
0043-1397
Sponsors:
Funding for S. E. Gasda is provided by a research fellowship through the King Abdullah University of Science and Technology (KAUST). This work was supported in part by the National Science Foundation under grant EAR-0934722, the Environmental Protection Agency under cooperative agreement RD-83438501, the Department of Energy under award DE-FE0001161, CFDA 81.089, and the Carbon Mitigation Initiative at Princeton University.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorGasda, S. E.en
dc.contributor.authorNordbotten, J. M.en
dc.contributor.authorCelia, M. A.en
dc.date.accessioned2016-02-28T06:44:14Zen
dc.date.available2016-02-28T06:44:14Zen
dc.date.issued2011-05-20en
dc.identifier.citationGasda SE, Nordbotten JM, Celia MA (2011) Vertically averaged approaches for CO 2 migration with solubility trapping . Water Resour Res 47. Available: http://dx.doi.org/10.1029/2010WR009075.en
dc.identifier.issn0043-1397en
dc.identifier.doi10.1029/2010WR009075en
dc.identifier.urihttp://hdl.handle.net/10754/600168en
dc.description.abstractThe long-term storage security of injected carbon dioxide (CO2) is an essential component of geological carbon sequestration operations. In the postinjection phase, the mobile CO2 plume migrates in large part because of buoyancy forces, following the natural topography of the geological formation. The primary trapping mechanisms are capillary and solubility trapping, which evolve over hundreds to thousands of years and can immobilize a significant portion of the mobile CO2 plume. However, both the migration and trapping processes are inherently complex, spanning multiple spatial and temporal scales. Using an appropriate model that can capture both large- and small-scale effects is essential for understanding the role of these processes on the long-term storage security of CO2 sequestration operations. Traditional numerical models quickly become prohibitively expensive for the type of large-scale, long-term modeling that is necessary for characterizing the migration and immobilization of CO2 during the postinjection period. We present an alternative modeling option that combines vertically integrated governing equations with an upscaled representation of the dissolution-convection process. With this approach, we demonstrate the effect of different modeling choices for typical large-scale geological systems and show that practical calculations can be performed at the temporal and spatial scales of interest. Copyright 2011 by the American Geophysical Union.en
dc.description.sponsorshipFunding for S. E. Gasda is provided by a research fellowship through the King Abdullah University of Science and Technology (KAUST). This work was supported in part by the National Science Foundation under grant EAR-0934722, the Environmental Protection Agency under cooperative agreement RD-83438501, the Department of Energy under award DE-FE0001161, CFDA 81.089, and the Carbon Mitigation Initiative at Princeton University.en
dc.publisherWiley-Blackwellen
dc.titleVertically averaged approaches for CO 2 migration with solubility trappingen
dc.typeArticleen
dc.identifier.journalWater Resources Researchen
dc.contributor.institutionThe University of North Carolina at Chapel Hill, Chapel Hill, United Statesen
dc.contributor.institutionUniversitetet i Bergen, Bergen, Norwayen
dc.contributor.institutionPrinceton University, Princeton, United Statesen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.