Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells

Handle URI:
http://hdl.handle.net/10754/600084
Title:
Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells
Authors:
Feng, Yujie; Yang, Qiao; Wang, Xin; Logan, Bruce E.
Abstract:
Carbon brush electrodes have been used to provide high surface areas for bacterial growth and high power densities in microbial fuel cells (MFCs). A high-temperature ammonia gas treatment has been used to enhance power generation, but less energy-intensive methods are needed for treating these electrodes in practice. Three different treatment methods are examined here for enhancing power generation of carbon fiber brushes: acid soaking (CF-A), heating (CF-H), and a combination of both processes (CF-AH). The combined heat and acid treatment improve power production to 1370 mW m-2, which is 34% larger than the untreated control (CF-C, 1020 mW m-2). This power density is 25% higher than using only acid treatment (1100 mW m-2) and 7% higher than that using only heat treatment (1280 mW m-2). XPS analysis of the treated and untreated anode materials indicates that power increases are related to higher N1s/C1s ratios and a lower C-O composition. These findings demonstrate efficient and simple methods for improving power generation using graphite fiber brushes, and provide insight into reasons for improving performance that may help to further increase power through other graphite fiber modifications. © 2009 Elsevier B.V. All rights reserved.
Citation:
Feng Y, Yang Q, Wang X, Logan BE (2010) Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. Journal of Power Sources 195: 1841–1844. Available: http://dx.doi.org/10.1016/j.jpowsour.2009.10.030.
Publisher:
Elsevier BV
Journal:
Journal of Power Sources
KAUST Grant Number:
KUS-I1-003-13
Issue Date:
2-Apr-2010
DOI:
10.1016/j.jpowsour.2009.10.030
Type:
Article
ISSN:
0378-7753
Sponsors:
The authors thank the support of National Science Foundation of China (No. 50638020), the National Creative Research Groups of China (50821002), and the King Abdullah University of Science and Technology (KAUST) (KUS-I1-003-13). The authors also thank for the State Key Laboratory of Urban Water Resource & Environment for the BET analysis and financial support (2008TS04), and Prof. Mingren Sun for the XPS analysis.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorFeng, Yujieen
dc.contributor.authorYang, Qiaoen
dc.contributor.authorWang, Xinen
dc.contributor.authorLogan, Bruce E.en
dc.date.accessioned2016-02-28T06:35:43Zen
dc.date.available2016-02-28T06:35:43Zen
dc.date.issued2010-04-02en
dc.identifier.citationFeng Y, Yang Q, Wang X, Logan BE (2010) Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. Journal of Power Sources 195: 1841–1844. Available: http://dx.doi.org/10.1016/j.jpowsour.2009.10.030.en
dc.identifier.issn0378-7753en
dc.identifier.doi10.1016/j.jpowsour.2009.10.030en
dc.identifier.urihttp://hdl.handle.net/10754/600084en
dc.description.abstractCarbon brush electrodes have been used to provide high surface areas for bacterial growth and high power densities in microbial fuel cells (MFCs). A high-temperature ammonia gas treatment has been used to enhance power generation, but less energy-intensive methods are needed for treating these electrodes in practice. Three different treatment methods are examined here for enhancing power generation of carbon fiber brushes: acid soaking (CF-A), heating (CF-H), and a combination of both processes (CF-AH). The combined heat and acid treatment improve power production to 1370 mW m-2, which is 34% larger than the untreated control (CF-C, 1020 mW m-2). This power density is 25% higher than using only acid treatment (1100 mW m-2) and 7% higher than that using only heat treatment (1280 mW m-2). XPS analysis of the treated and untreated anode materials indicates that power increases are related to higher N1s/C1s ratios and a lower C-O composition. These findings demonstrate efficient and simple methods for improving power generation using graphite fiber brushes, and provide insight into reasons for improving performance that may help to further increase power through other graphite fiber modifications. © 2009 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipThe authors thank the support of National Science Foundation of China (No. 50638020), the National Creative Research Groups of China (50821002), and the King Abdullah University of Science and Technology (KAUST) (KUS-I1-003-13). The authors also thank for the State Key Laboratory of Urban Water Resource & Environment for the BET analysis and financial support (2008TS04), and Prof. Mingren Sun for the XPS analysis.en
dc.publisherElsevier BVen
dc.subjectCarbon fiberen
dc.subjectMicrobial fuel cellsen
dc.subjectPower generationen
dc.subjectPretreatmenten
dc.titleTreatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cellsen
dc.typeArticleen
dc.identifier.journalJournal of Power Sourcesen
dc.contributor.institutionState Key Laboratory of Urban Water Resource and Environment, Harbin, Chinaen
dc.contributor.institutionPennsylvania State University, State College, United Statesen
kaust.grant.numberKUS-I1-003-13en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.