Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes

Handle URI:
http://hdl.handle.net/10754/600015
Title:
Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes
Authors:
Pelties, Christian; de la Puente, Josep; Ampuero, Jean-Paul; Brietzke, Gilbert B.; Käser, Martin
Abstract:
Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography. Copyright 2012 by the American Geophysical Union.
Citation:
Pelties C, de la Puente J, Ampuero J-P, Brietzke GB, Käser M (2012) Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes. Journal of Geophysical Research 117. Available: http://dx.doi.org/10.1029/2011jb008857.
Publisher:
Wiley-Blackwell
Journal:
Journal of Geophysical Research: Solid Earth
Issue Date:
18-Feb-2012
DOI:
10.1029/2011jb008857
Type:
Article
ISSN:
0148-0227
Sponsors:
The authors thank the DFG (Deutsche Forschungsgemeinschaft),as the work was supported through the EmmyNoether-Programm (KA 2281/2-1). J.-P. A. was partially funded by NSF(grant EAR-0944288) and by the Southern California Earthquake Center(funded by NSF Cooperative Agreement EAR-0106924 and USGS CooperativeAgreement 02HQAG0008). The DFM data used for comparison wereprovided by Luis A. Dalguer and the SBIEM solutions where producedwith the code of Eric M. Dunham (MDSBI: Multidimensional spectralboundary integral, version 3.9.10, 2008, available at http://pangea.stanford.edu/~edunham/codes/codes.html). Furthermore, we thank Luis A. Dalguerand Alan Schiemenz for very helpful and fruitful discussions. Cristóbal E.Castro gave valuable comments and advice on the solution of the Riemannproblem and the parallelization. We also thank M. Mai for providing computationalresources as many parallel tests, the convergence test, and theSCEC benchmark have been computed on the BlueGene/P Shaheen ofthe King Abdullah University of Science and Technology, Saudi Arabia.This paper is SCEC contribution 1526 and Caltech Seismological Lab contribution10067. The reviews and comments by J.-P. Vilotte, S. M. Day,and the Associate Editor are appreciated and helped us to improve themanuscript.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorPelties, Christianen
dc.contributor.authorde la Puente, Josepen
dc.contributor.authorAmpuero, Jean-Paulen
dc.contributor.authorBrietzke, Gilbert B.en
dc.contributor.authorKäser, Martinen
dc.date.accessioned2016-02-28T06:34:23Zen
dc.date.available2016-02-28T06:34:23Zen
dc.date.issued2012-02-18en
dc.identifier.citationPelties C, de la Puente J, Ampuero J-P, Brietzke GB, Käser M (2012) Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes. Journal of Geophysical Research 117. Available: http://dx.doi.org/10.1029/2011jb008857.en
dc.identifier.issn0148-0227en
dc.identifier.doi10.1029/2011jb008857en
dc.identifier.urihttp://hdl.handle.net/10754/600015en
dc.description.abstractAccurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography. Copyright 2012 by the American Geophysical Union.en
dc.description.sponsorshipThe authors thank the DFG (Deutsche Forschungsgemeinschaft),as the work was supported through the EmmyNoether-Programm (KA 2281/2-1). J.-P. A. was partially funded by NSF(grant EAR-0944288) and by the Southern California Earthquake Center(funded by NSF Cooperative Agreement EAR-0106924 and USGS CooperativeAgreement 02HQAG0008). The DFM data used for comparison wereprovided by Luis A. Dalguer and the SBIEM solutions where producedwith the code of Eric M. Dunham (MDSBI: Multidimensional spectralboundary integral, version 3.9.10, 2008, available at http://pangea.stanford.edu/~edunham/codes/codes.html). Furthermore, we thank Luis A. Dalguerand Alan Schiemenz for very helpful and fruitful discussions. Cristóbal E.Castro gave valuable comments and advice on the solution of the Riemannproblem and the parallelization. We also thank M. Mai for providing computationalresources as many parallel tests, the convergence test, and theSCEC benchmark have been computed on the BlueGene/P Shaheen ofthe King Abdullah University of Science and Technology, Saudi Arabia.This paper is SCEC contribution 1526 and Caltech Seismological Lab contribution10067. The reviews and comments by J.-P. Vilotte, S. M. Day,and the Associate Editor are appreciated and helped us to improve themanuscript.en
dc.publisherWiley-Blackwellen
dc.titleThree-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshesen
dc.typeArticleen
dc.identifier.journalJournal of Geophysical Research: Solid Earthen
dc.contributor.institutionLudwig-Maximilians-Universitat Munchen, Munich, Germanyen
dc.contributor.institutionCentro Nacional de Supercomputacion, Barcelona, Spainen
dc.contributor.institutionCalifornia Institute of Technology, Pasadena, United Statesen
dc.contributor.institutionDeutsches GeoForschungsZentrum (GFZ), Potsdam, Germanyen
dc.contributor.institutionMünchener Rückversicherungs-Gesellschaft, D-80802 München, Germanyen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.