Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties

Handle URI:
http://hdl.handle.net/10754/599993
Title:
Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties
Authors:
Lou, Xiong Wen; Deng, Da; Lee, Jim Yang; Archer, Lynden A.
Abstract:
In this work, we report the simple solid-state formation of mesoporous Co3O4 nano-needles with a 3D single-crystalline framework. The synthesis is based on controlled thermal oxidative decomposition and re-crystallization of precursor β-Co(OH)2 nano-needles. Importantly, after thermal treatment, the needle-like morphology can be completely preserved, despite the fact that there is a large volume contraction accompanying the process: β-Co(OH)2 → Co3O 4. Because of the intrinsic crystal contraction, a highly mesoporous structure with high specific surface area has been simultaneously created. The textual properties can be easily tailored by varying the annealing temperature between 200-400 °C. Interestingly, thermal re-crystallization at higher temperatures leads to the formation of a perfect 3D single-crystalline framework. Thus derived mesoporous Co3O4 nano-needles serve as a good model system for the study of lithium storage properties. The optimized sample manifests very low initial irreversible loss (21%), ultrahigh capacity, and excellent cycling performance. For example, a reversible capacity of 1079 mA h g-1 can be maintained after 50 cycles. The superior electrochemical performance and ease of synthesis may suggest their practical use in lithium-ion batteries. © The Royal Society of Chemistry 2008.
Citation:
Lou XW, Deng D, Lee JY, Archer LA (2008) Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J Mater Chem 18: 4397. Available: http://dx.doi.org/10.1039/b810093d.
Publisher:
Royal Society of Chemistry (RSC)
Journal:
Journal of Materials Chemistry
Issue Date:
2008
DOI:
10.1039/b810093d
Type:
Article
ISSN:
0959-9428; 1364-5501
Sponsors:
The authors are grateful to the National Science Foundation (DMR 0404278) and to the KAUST-Cornell (KAUST-CU) Center for Energy and Sustainability for supporting this study. Facilities available through the Cornell Center for Materials Research (CCMR), and Cornell Integrated Microscopy Center (CIMC) were used for this study.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorLou, Xiong Wenen
dc.contributor.authorDeng, Daen
dc.contributor.authorLee, Jim Yangen
dc.contributor.authorArcher, Lynden A.en
dc.date.accessioned2016-02-28T06:33:58Zen
dc.date.available2016-02-28T06:33:58Zen
dc.date.issued2008en
dc.identifier.citationLou XW, Deng D, Lee JY, Archer LA (2008) Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J Mater Chem 18: 4397. Available: http://dx.doi.org/10.1039/b810093d.en
dc.identifier.issn0959-9428en
dc.identifier.issn1364-5501en
dc.identifier.doi10.1039/b810093den
dc.identifier.urihttp://hdl.handle.net/10754/599993en
dc.description.abstractIn this work, we report the simple solid-state formation of mesoporous Co3O4 nano-needles with a 3D single-crystalline framework. The synthesis is based on controlled thermal oxidative decomposition and re-crystallization of precursor β-Co(OH)2 nano-needles. Importantly, after thermal treatment, the needle-like morphology can be completely preserved, despite the fact that there is a large volume contraction accompanying the process: β-Co(OH)2 → Co3O 4. Because of the intrinsic crystal contraction, a highly mesoporous structure with high specific surface area has been simultaneously created. The textual properties can be easily tailored by varying the annealing temperature between 200-400 °C. Interestingly, thermal re-crystallization at higher temperatures leads to the formation of a perfect 3D single-crystalline framework. Thus derived mesoporous Co3O4 nano-needles serve as a good model system for the study of lithium storage properties. The optimized sample manifests very low initial irreversible loss (21%), ultrahigh capacity, and excellent cycling performance. For example, a reversible capacity of 1079 mA h g-1 can be maintained after 50 cycles. The superior electrochemical performance and ease of synthesis may suggest their practical use in lithium-ion batteries. © The Royal Society of Chemistry 2008.en
dc.description.sponsorshipThe authors are grateful to the National Science Foundation (DMR 0404278) and to the KAUST-Cornell (KAUST-CU) Center for Energy and Sustainability for supporting this study. Facilities available through the Cornell Center for Materials Research (CCMR), and Cornell Integrated Microscopy Center (CIMC) were used for this study.en
dc.publisherRoyal Society of Chemistry (RSC)en
dc.titleThermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage propertiesen
dc.typeArticleen
dc.identifier.journalJournal of Materials Chemistryen
dc.contributor.institutionCornell University, Ithaca, United Statesen
dc.contributor.institutionNanyang Technological University, Singapore City, Singaporeen
dc.contributor.institutionNational University of Singapore, Singapore City, Singaporeen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.