The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells

Handle URI:
http://hdl.handle.net/10754/599973
Title:
The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells
Authors:
Zhang, Yimin; Merrill, Matthew D.; Logan, Bruce E.
Abstract:
Microbial electrolysis cells (MECs) provide a high-yield method for producing hydrogen from renewable biomass. One challenge for commercialization of the technology is a low-cost and highly efficient cathode. Stainless steel (SS) is very inexpensive, and cathodes made of this material with high specific surface areas can achieve performance similar to carbon cathodes containing a platinum catalyst in MECs. SS mesh cathodes were examined here as a method to provide a higher surface area material than flat plate electrodes. Cyclic voltammetry tests showed that the electrochemically active surface area of certain sized mesh could be three times larger than a flat sheet. The relative performance of SS mesh in linear sweep voltammetry at low bubble coverages (low current densities) was also consistent with performance on this basis in MEC tests. The best SS mesh size (#60) in MEC tests had a relatively thick wire size (0.02 cm), a medium pore size (0.02 cm), and a specific surface area of 66 m2/m3. An applied voltage of 0.9 V produced a high hydrogen recovery (98 ± 4%) and overall energy efficiency (74 ± 4%), with a hydrogen production rate of 2.1 ± 0.3 m3H 2/m3d (current density of 8.08 A/m2, volumetric current density of 188 ± 19 A/m3). These studies show that SS in mesh format shows great promise for the development of lower cost MEC systems for hydrogen production. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Citation:
Zhang Y, Merrill MD, Logan BE (2010) The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells. International Journal of Hydrogen Energy 35: 12020–12028. Available: http://dx.doi.org/10.1016/j.ijhydene.2010.08.064.
Publisher:
Elsevier BV
Journal:
International Journal of Hydrogen Energy
KAUST Grant Number:
KUS-I1-003-13
Issue Date:
Nov-2010
DOI:
10.1016/j.ijhydene.2010.08.064
Type:
Article
ISSN:
0360-3199
Sponsors:
This study was supported by the King Abdullah University of Science and Technology (KAUST) (Award KUS-I1-003-13).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorZhang, Yiminen
dc.contributor.authorMerrill, Matthew D.en
dc.contributor.authorLogan, Bruce E.en
dc.date.accessioned2016-02-28T06:33:35Zen
dc.date.available2016-02-28T06:33:35Zen
dc.date.issued2010-11en
dc.identifier.citationZhang Y, Merrill MD, Logan BE (2010) The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells. International Journal of Hydrogen Energy 35: 12020–12028. Available: http://dx.doi.org/10.1016/j.ijhydene.2010.08.064.en
dc.identifier.issn0360-3199en
dc.identifier.doi10.1016/j.ijhydene.2010.08.064en
dc.identifier.urihttp://hdl.handle.net/10754/599973en
dc.description.abstractMicrobial electrolysis cells (MECs) provide a high-yield method for producing hydrogen from renewable biomass. One challenge for commercialization of the technology is a low-cost and highly efficient cathode. Stainless steel (SS) is very inexpensive, and cathodes made of this material with high specific surface areas can achieve performance similar to carbon cathodes containing a platinum catalyst in MECs. SS mesh cathodes were examined here as a method to provide a higher surface area material than flat plate electrodes. Cyclic voltammetry tests showed that the electrochemically active surface area of certain sized mesh could be three times larger than a flat sheet. The relative performance of SS mesh in linear sweep voltammetry at low bubble coverages (low current densities) was also consistent with performance on this basis in MEC tests. The best SS mesh size (#60) in MEC tests had a relatively thick wire size (0.02 cm), a medium pore size (0.02 cm), and a specific surface area of 66 m2/m3. An applied voltage of 0.9 V produced a high hydrogen recovery (98 ± 4%) and overall energy efficiency (74 ± 4%), with a hydrogen production rate of 2.1 ± 0.3 m3H 2/m3d (current density of 8.08 A/m2, volumetric current density of 188 ± 19 A/m3). These studies show that SS in mesh format shows great promise for the development of lower cost MEC systems for hydrogen production. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipThis study was supported by the King Abdullah University of Science and Technology (KAUST) (Award KUS-I1-003-13).en
dc.publisherElsevier BVen
dc.subjectCathodeen
dc.subjectMicrobial electrolysis cellen
dc.subjectStainless steel meshen
dc.titleThe use and optimization of stainless steel mesh cathodes in microbial electrolysis cellsen
dc.typeArticleen
dc.identifier.journalInternational Journal of Hydrogen Energyen
dc.contributor.institutionPennsylvania State University, State College, United Statesen
kaust.grant.numberKUS-I1-003-13en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.