Handle URI:
http://hdl.handle.net/10754/599928
Title:
The kinetics of ice-lens growth in porous media
Authors:
Style, Robert W.; Peppin, Stephen S. L.
Abstract:
Abstract We analyse the growth rate of segregated ice (ice lenses) in freezing porous media. For typical colloidal materials such as soils we show that the commonly employed Clapeyron equation is not valid macroscopically at the interface between the ice lens and the surrounding porous medium owing to the viscous dynamics of flow in premelted films. The flow in these films gives rise to an 'interfacial resistance' to flow towards the growing ice which causes a significant drop in predicted ice-growth (heave) rates. This explains why many previous models predict ice-growth rates that are much larger than those seen in experiments. We derive an explicit formula for the ice-growth rate in a given porous medium, and show that this only depends on temperature and on the external pressures imposed on the freezing system. This growth-rate formula contains a material-specific function which can be calculated (with knowledge of the geometry and material of the porous medium), but which is also readily experimentally measurable. We apply the formula to plate-like particles, and show that the results can be matched with previous experimental data. Finally we show how the interfacial resistance explains the observation that the maximum heave rate in soils occurs in medium-grained particles such as silts, while heave rates are smaller for fine-and coarse-grained particles. © 2012 Cambridge University Press.
Citation:
Style RW, Peppin SSL (2012) The kinetics of ice-lens growth in porous media. Journal of Fluid Mechanics 692: 482–498. Available: http://dx.doi.org/10.1017/jfm.2011.545.
Publisher:
Cambridge University Press (CUP)
Journal:
Journal of Fluid Mechanics
KAUST Grant Number:
KUK-C1-013-04
Issue Date:
9-Jan-2012
DOI:
10.1017/jfm.2011.545
Type:
Article
ISSN:
0022-1120; 1469-7645
Sponsors:
This publication was based on work supported by Award No KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorStyle, Robert W.en
dc.contributor.authorPeppin, Stephen S. L.en
dc.date.accessioned2016-02-28T06:32:38Zen
dc.date.available2016-02-28T06:32:38Zen
dc.date.issued2012-01-09en
dc.identifier.citationStyle RW, Peppin SSL (2012) The kinetics of ice-lens growth in porous media. Journal of Fluid Mechanics 692: 482–498. Available: http://dx.doi.org/10.1017/jfm.2011.545.en
dc.identifier.issn0022-1120en
dc.identifier.issn1469-7645en
dc.identifier.doi10.1017/jfm.2011.545en
dc.identifier.urihttp://hdl.handle.net/10754/599928en
dc.description.abstractAbstract We analyse the growth rate of segregated ice (ice lenses) in freezing porous media. For typical colloidal materials such as soils we show that the commonly employed Clapeyron equation is not valid macroscopically at the interface between the ice lens and the surrounding porous medium owing to the viscous dynamics of flow in premelted films. The flow in these films gives rise to an 'interfacial resistance' to flow towards the growing ice which causes a significant drop in predicted ice-growth (heave) rates. This explains why many previous models predict ice-growth rates that are much larger than those seen in experiments. We derive an explicit formula for the ice-growth rate in a given porous medium, and show that this only depends on temperature and on the external pressures imposed on the freezing system. This growth-rate formula contains a material-specific function which can be calculated (with knowledge of the geometry and material of the porous medium), but which is also readily experimentally measurable. We apply the formula to plate-like particles, and show that the results can be matched with previous experimental data. Finally we show how the interfacial resistance explains the observation that the maximum heave rate in soils occurs in medium-grained particles such as silts, while heave rates are smaller for fine-and coarse-grained particles. © 2012 Cambridge University Press.en
dc.description.sponsorshipThis publication was based on work supported by Award No KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).en
dc.publisherCambridge University Press (CUP)en
dc.subjectcolloidsen
dc.subjectlubrication theoryen
dc.subjectsolidification/meltingen
dc.titleThe kinetics of ice-lens growth in porous mediaen
dc.typeArticleen
dc.identifier.journalJournal of Fluid Mechanicsen
dc.contributor.institutionUniversity of Oxford, Oxford, United Kingdomen
dc.contributor.institutionYale University, New Haven, United Statesen
kaust.grant.numberKUK-C1-013-04en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.