Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells

Handle URI:
http://hdl.handle.net/10754/599783
Title:
Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells
Authors:
Ma, Zaifei; Sun, Wenjun; Himmelberger, Scott; Vandewal, Koen; Tang, Zheng; Bergqvist, Jonas; Salleo, Alberto; Andreasen, Jens Wenzel; Inganäs, Olle; Andersson, Mats R.; Müller, Christian; Zhang, Fengling; Wang, Ergang
Abstract:
A series of alternating oligothiophene (nT)-isoindigo (I) copolymers (PnTI) were synthesized to investigate the influence of the oligothiophene block length on the photovoltaic (PV) properties of PnTI:PCBM bulk-heterojunction blends. Our study indicates that the number of thiophene rings (n) in the repeating unit alters both polymer crystallinity and polymer-fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force for electron transfer. Instead, blends based on P5TI and P6TI feature large polymer domains, which limit charge generation and thus Jsc. The best PV performance with a power conversion efficiency of up to 6.9% was achieved with devices based on P3TI, where a combination of a favorable morphology and an optimal interfacial energy level offset ensures efficient exciton separation and charge generation. The structure-property relationship demonstrated in this work would be a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing for the fabrication of efficient solar cells that combine a minimal loss in Voc with a high Jsc. © 2014 The Royal Society of Chemistry.
Citation:
Ma Z, Sun W, Himmelberger S, Vandewal K, Tang Z, et al. (2014) Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells. Energy Environ Sci 7: 361–369. Available: http://dx.doi.org/10.1039/c3ee42989j.
Publisher:
Royal Society of Chemistry (RSC)
Journal:
Energy Environ. Sci.
Issue Date:
2014
DOI:
10.1039/c3ee42989j
Type:
Article
ISSN:
1754-5692; 1754-5706
Sponsors:
We thank the Swedish Research Council, Swedish Energy Agency, VINNOVA, Chalmers Areas of Advance Materials Science, NANO and Energy for financial support. CM thanks Formas and the Chalmers Areas of Advance Energy and Nano-science and Nanotechnology for funding. We further acknowledge financial support from the National Science Foundation, the Center for Advanced Molecular Photovoltaics (Award no. KUS-C1-015-21) made by the King Abdullah University of Science and Technology (KAUST) and the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC02-76SF00515. SE is grateful to the National Science Foundation for financial support in the form of a Graduate Research Fellowship.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorMa, Zaifeien
dc.contributor.authorSun, Wenjunen
dc.contributor.authorHimmelberger, Scotten
dc.contributor.authorVandewal, Koenen
dc.contributor.authorTang, Zhengen
dc.contributor.authorBergqvist, Jonasen
dc.contributor.authorSalleo, Albertoen
dc.contributor.authorAndreasen, Jens Wenzelen
dc.contributor.authorInganäs, Olleen
dc.contributor.authorAndersson, Mats R.en
dc.contributor.authorMüller, Christianen
dc.contributor.authorZhang, Fenglingen
dc.contributor.authorWang, Ergangen
dc.date.accessioned2016-02-28T06:09:43Zen
dc.date.available2016-02-28T06:09:43Zen
dc.date.issued2014en
dc.identifier.citationMa Z, Sun W, Himmelberger S, Vandewal K, Tang Z, et al. (2014) Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells. Energy Environ Sci 7: 361–369. Available: http://dx.doi.org/10.1039/c3ee42989j.en
dc.identifier.issn1754-5692en
dc.identifier.issn1754-5706en
dc.identifier.doi10.1039/c3ee42989jen
dc.identifier.urihttp://hdl.handle.net/10754/599783en
dc.description.abstractA series of alternating oligothiophene (nT)-isoindigo (I) copolymers (PnTI) were synthesized to investigate the influence of the oligothiophene block length on the photovoltaic (PV) properties of PnTI:PCBM bulk-heterojunction blends. Our study indicates that the number of thiophene rings (n) in the repeating unit alters both polymer crystallinity and polymer-fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force for electron transfer. Instead, blends based on P5TI and P6TI feature large polymer domains, which limit charge generation and thus Jsc. The best PV performance with a power conversion efficiency of up to 6.9% was achieved with devices based on P3TI, where a combination of a favorable morphology and an optimal interfacial energy level offset ensures efficient exciton separation and charge generation. The structure-property relationship demonstrated in this work would be a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing for the fabrication of efficient solar cells that combine a minimal loss in Voc with a high Jsc. © 2014 The Royal Society of Chemistry.en
dc.description.sponsorshipWe thank the Swedish Research Council, Swedish Energy Agency, VINNOVA, Chalmers Areas of Advance Materials Science, NANO and Energy for financial support. CM thanks Formas and the Chalmers Areas of Advance Energy and Nano-science and Nanotechnology for funding. We further acknowledge financial support from the National Science Foundation, the Center for Advanced Molecular Photovoltaics (Award no. KUS-C1-015-21) made by the King Abdullah University of Science and Technology (KAUST) and the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC02-76SF00515. SE is grateful to the National Science Foundation for financial support in the form of a Graduate Research Fellowship.en
dc.publisherRoyal Society of Chemistry (RSC)en
dc.titleStructure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cellsen
dc.typeArticleen
dc.identifier.journalEnergy Environ. Sci.en
dc.contributor.institutionChalmers University of Technology, Göteborg, Swedenen
dc.contributor.institutionLinkopings universitet, Linkoping, Swedenen
dc.contributor.institutionStanford University, Palo Alto, United Statesen
dc.contributor.institutionDanmarks Tekniske Universitet, Lyngby, Denmarken
kaust.grant.fundedcenterCenter for Advanced Molecular Photovoltaics (CAMP)en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.