Strontium influence on the oxygen electrocatalysis of La2−xSrxNiO4±δ (0.0 ≤ xSr ≤ 1.0) thin films

Handle URI:
http://hdl.handle.net/10754/599751
Title:
Strontium influence on the oxygen electrocatalysis of La2−xSrxNiO4±δ (0.0 ≤ xSr ≤ 1.0) thin films
Authors:
Lee, Dongkyu; Lee, Yueh-Lin; Grimaud, Alexis; Hong, Wesley T.; Biegalski, Michael D.; Morgan, Dane; Shao-Horn, Yang
Abstract:
Substitution of lanthanum by strontium (Sr) in the A-site of cobalt-containing perovskites can greatly promote oxygen surface exchange kinetics at elevated temperatures. Little is known about the effect of A-site substitution on the oxygen electrocatalysis of Ruddlesden-Popper (RP) oxides. In this study, we report, for the first time, the growth and oxygen surface exchange kinetics of La2-xSrxNiO 4±δ (LSNO, 0.0 ≤ xSr ≤ 1.0) thin films grown on (001)cubic-Y2O3-stabilized ZrO 2 (YSZ) by pulsed laser deposition. High-resolution X-ray diffraction analysis revealed that the LSNO film orientation was changed gradually from the (100)tetra. (in-plane) to the (001)tetra. (out-of-plane) orientation in the RP structure with increasing Sr from La2NiO 4+δ (xSr = 0) to LaSrNiO4±δ (xSr = 1.0). Such a change in the LSNO film orientation was accompanied by reduction in the oxygen surface exchange kinetics by two orders of magnitude as shown from electrochemical impedance spectroscopy results. Density functional theory (DFT) calculations showed that Sr substitution could stabilize the (001)tetra. surface relative to the (100) tetra. surface and both Sr substitution and increasing (001) tetra. surface could greatly weaken adsorption of molecular oxygen in the La-La bridge sites in the RP structure, which can reduce oxygen surface exchange kinetics. This journal is © the Partner Organisations 2014.
Citation:
Lee D, Lee Y-L, Grimaud A, Hong WT, Biegalski MD, et al. (2014) Strontium influence on the oxygen electrocatalysis of La2−xSrxNiO4±δ (0.0 ≤ xSr ≤ 1.0) thin films. Journal of Materials Chemistry A 2: 6480. Available: http://dx.doi.org/10.1039/c3ta14918h.
Publisher:
Royal Society of Chemistry (RSC)
Journal:
Journal of Materials Chemistry A
Issue Date:
2014
DOI:
10.1039/c3ta14918h
Type:
Article
ISSN:
2050-7488; 2050-7496
Sponsors:
This work was supported in part by DOE (SISGR DESC0002633) and King Abdullah University of Science and Technology. The authors would like to thank the King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia, for funding the research reported in this paper through the Center for Clean Water and Clean Energy at MIT and KFUPM. Funding for D. Morgan and partial support for Y.-L. Lee provided by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award number DESC0001284. This work also benefitted from the use of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. PLD was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorLee, Dongkyuen
dc.contributor.authorLee, Yueh-Linen
dc.contributor.authorGrimaud, Alexisen
dc.contributor.authorHong, Wesley T.en
dc.contributor.authorBiegalski, Michael D.en
dc.contributor.authorMorgan, Daneen
dc.contributor.authorShao-Horn, Yangen
dc.date.accessioned2016-02-28T06:08:58Zen
dc.date.available2016-02-28T06:08:58Zen
dc.date.issued2014en
dc.identifier.citationLee D, Lee Y-L, Grimaud A, Hong WT, Biegalski MD, et al. (2014) Strontium influence on the oxygen electrocatalysis of La2−xSrxNiO4±δ (0.0 ≤ xSr ≤ 1.0) thin films. Journal of Materials Chemistry A 2: 6480. Available: http://dx.doi.org/10.1039/c3ta14918h.en
dc.identifier.issn2050-7488en
dc.identifier.issn2050-7496en
dc.identifier.doi10.1039/c3ta14918hen
dc.identifier.urihttp://hdl.handle.net/10754/599751en
dc.description.abstractSubstitution of lanthanum by strontium (Sr) in the A-site of cobalt-containing perovskites can greatly promote oxygen surface exchange kinetics at elevated temperatures. Little is known about the effect of A-site substitution on the oxygen electrocatalysis of Ruddlesden-Popper (RP) oxides. In this study, we report, for the first time, the growth and oxygen surface exchange kinetics of La2-xSrxNiO 4±δ (LSNO, 0.0 ≤ xSr ≤ 1.0) thin films grown on (001)cubic-Y2O3-stabilized ZrO 2 (YSZ) by pulsed laser deposition. High-resolution X-ray diffraction analysis revealed that the LSNO film orientation was changed gradually from the (100)tetra. (in-plane) to the (001)tetra. (out-of-plane) orientation in the RP structure with increasing Sr from La2NiO 4+δ (xSr = 0) to LaSrNiO4±δ (xSr = 1.0). Such a change in the LSNO film orientation was accompanied by reduction in the oxygen surface exchange kinetics by two orders of magnitude as shown from electrochemical impedance spectroscopy results. Density functional theory (DFT) calculations showed that Sr substitution could stabilize the (001)tetra. surface relative to the (100) tetra. surface and both Sr substitution and increasing (001) tetra. surface could greatly weaken adsorption of molecular oxygen in the La-La bridge sites in the RP structure, which can reduce oxygen surface exchange kinetics. This journal is © the Partner Organisations 2014.en
dc.description.sponsorshipThis work was supported in part by DOE (SISGR DESC0002633) and King Abdullah University of Science and Technology. The authors would like to thank the King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia, for funding the research reported in this paper through the Center for Clean Water and Clean Energy at MIT and KFUPM. Funding for D. Morgan and partial support for Y.-L. Lee provided by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award number DESC0001284. This work also benefitted from the use of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. PLD was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.en
dc.publisherRoyal Society of Chemistry (RSC)en
dc.titleStrontium influence on the oxygen electrocatalysis of La2−xSrxNiO4±δ (0.0 ≤ xSr ≤ 1.0) thin filmsen
dc.typeArticleen
dc.identifier.journalJournal of Materials Chemistry Aen
dc.contributor.institutionMassachusetts Institute of Technology, Cambridge, United Statesen
dc.contributor.institutionOak Ridge National Laboratory, Oak Ridge, United Statesen
dc.contributor.institutionUniversity of Wisconsin Madison, Madison, United Statesen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.