Spectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type doping

Handle URI:
http://hdl.handle.net/10754/599691
Title:
Spectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type doping
Authors:
Mantega, M.; Rungger, I.; Naydenov, B.; Boland, J. J.; Sanvito, S.
Abstract:
We investigate the charging state of an isolated single dangling bond formed on an unpassivated Si(100) surface with c(4×2) reconstruction, by comparing scanning tunneling microscopy and spectroscopy analysis with density functional theory calculations. The dangling bond is created by placing a single hydrogen atom on the bare surface with the tip of a scanning tunneling microscope. The H atom passivates one of the dimer dangling bonds responsible for the surface one-dimensional electronic structure. This leaves a second dangling at the reacted surface dimer which breaks the surface periodicity. We consider two possible H adsorption configurations for both the neutral and the doped situation (n- and p-type). In the case of n-doping we find that the single dangling bond state is doubly occupied and the most stable configuration is that with H bonded to the bottom Si atom of the surface dimer. In the case of p-doping the dangling bond is instead empty and the configuration with the H attached to the top atom of the dimer is the most stable. Importantly the two configurations have different scattering properties and phase shift fingerprints. This might open up interesting perspectives for fabricating a switching device by tuning the doping level or by locally charging the single dangling bond state. © 2012 American Physical Society.
Citation:
Mantega M, Rungger I, Naydenov B, Boland JJ, Sanvito S (2012) Spectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type doping . Physical Review B 86. Available: http://dx.doi.org/10.1103/PhysRevB.86.035318.
Publisher:
American Physical Society (APS)
Journal:
Physical Review B
Issue Date:
19-Jul-2012
DOI:
10.1103/PhysRevB.86.035318
Type:
Article
ISSN:
1098-0121; 1550-235X
Sponsors:
We would like to acknowledge the Trinity Centre for High Performance Computing (TCHPC) and the Irish Center for High-End Computing (ICHEC) for computational resources. Funding has been provided by Science Foundation Ireland (Grants No. 07/IN.1/I945 and No. 06/IN.1/I106) and the King Abdullah University of Science and Technology (acrab project).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorMantega, M.en
dc.contributor.authorRungger, I.en
dc.contributor.authorNaydenov, B.en
dc.contributor.authorBoland, J. J.en
dc.contributor.authorSanvito, S.en
dc.date.accessioned2016-02-28T06:07:38Zen
dc.date.available2016-02-28T06:07:38Zen
dc.date.issued2012-07-19en
dc.identifier.citationMantega M, Rungger I, Naydenov B, Boland JJ, Sanvito S (2012) Spectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type doping . Physical Review B 86. Available: http://dx.doi.org/10.1103/PhysRevB.86.035318.en
dc.identifier.issn1098-0121en
dc.identifier.issn1550-235Xen
dc.identifier.doi10.1103/PhysRevB.86.035318en
dc.identifier.urihttp://hdl.handle.net/10754/599691en
dc.description.abstractWe investigate the charging state of an isolated single dangling bond formed on an unpassivated Si(100) surface with c(4×2) reconstruction, by comparing scanning tunneling microscopy and spectroscopy analysis with density functional theory calculations. The dangling bond is created by placing a single hydrogen atom on the bare surface with the tip of a scanning tunneling microscope. The H atom passivates one of the dimer dangling bonds responsible for the surface one-dimensional electronic structure. This leaves a second dangling at the reacted surface dimer which breaks the surface periodicity. We consider two possible H adsorption configurations for both the neutral and the doped situation (n- and p-type). In the case of n-doping we find that the single dangling bond state is doubly occupied and the most stable configuration is that with H bonded to the bottom Si atom of the surface dimer. In the case of p-doping the dangling bond is instead empty and the configuration with the H attached to the top atom of the dimer is the most stable. Importantly the two configurations have different scattering properties and phase shift fingerprints. This might open up interesting perspectives for fabricating a switching device by tuning the doping level or by locally charging the single dangling bond state. © 2012 American Physical Society.en
dc.description.sponsorshipWe would like to acknowledge the Trinity Centre for High Performance Computing (TCHPC) and the Irish Center for High-End Computing (ICHEC) for computational resources. Funding has been provided by Science Foundation Ireland (Grants No. 07/IN.1/I945 and No. 06/IN.1/I106) and the King Abdullah University of Science and Technology (acrab project).en
dc.publisherAmerican Physical Society (APS)en
dc.titleSpectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type dopingen
dc.typeArticleen
dc.identifier.journalPhysical Review Ben
dc.contributor.institutionTrinity College Dublin, Dublin, Irelanden
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.