Size dependence of efficiency at maximum power of heat engine

Handle URI:
http://hdl.handle.net/10754/599644
Title:
Size dependence of efficiency at maximum power of heat engine
Authors:
Izumida, Y.; Ito, N.
Abstract:
We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.
Citation:
Izumida Y, Ito N (2013) Size dependence of efficiency at maximum power of heat engine. Eur Phys J B 86. Available: http://dx.doi.org/10.1140/epjb/e2013-40569-1.
Publisher:
Springer Nature
Journal:
The European Physical Journal B
KAUST Grant Number:
KUK-I1-005-04
Issue Date:
Oct-2013
DOI:
10.1140/epjb/e2013-40569-1
Type:
Article
ISSN:
1434-6028; 1434-6036
Sponsors:
The authors thank T.S. Komatsu and K. Okuda for valu-able discussions. Y.I. acknowledges the financial support froma Grant-in-Aid for JSPS Fellows (Grant No. 22-2109). Thiswork was partly supported by Award No. KUK-I1-005-04made by King Abdullah University of Science and Technology(KAUST).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorIzumida, Y.en
dc.contributor.authorIto, N.en
dc.date.accessioned2016-02-28T06:06:33Zen
dc.date.available2016-02-28T06:06:33Zen
dc.date.issued2013-10en
dc.identifier.citationIzumida Y, Ito N (2013) Size dependence of efficiency at maximum power of heat engine. Eur Phys J B 86. Available: http://dx.doi.org/10.1140/epjb/e2013-40569-1.en
dc.identifier.issn1434-6028en
dc.identifier.issn1434-6036en
dc.identifier.doi10.1140/epjb/e2013-40569-1en
dc.identifier.urihttp://hdl.handle.net/10754/599644en
dc.description.abstractWe perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.en
dc.description.sponsorshipThe authors thank T.S. Komatsu and K. Okuda for valu-able discussions. Y.I. acknowledges the financial support froma Grant-in-Aid for JSPS Fellows (Grant No. 22-2109). Thiswork was partly supported by Award No. KUK-I1-005-04made by King Abdullah University of Science and Technology(KAUST).en
dc.publisherSpringer Natureen
dc.titleSize dependence of efficiency at maximum power of heat engineen
dc.typeArticleen
dc.identifier.journalThe European Physical Journal Ben
dc.contributor.institutionUniversity of Tokyo, Tokyo, Japanen
dc.contributor.institutionOchanomizu University, Tokyo, Japanen
kaust.grant.numberKUK-I1-005-04en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.