Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity

Handle URI:
http://hdl.handle.net/10754/599574
Title:
Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity
Authors:
Corgié, Stéphane C.; Kahawong, Patarawan; Duan, Xiaonan; Bowser, Daniel; Edward, Joseph B.; Walker, Larry P.; Giannelis, Emmanuel P.
Abstract:
Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs affect the formation of the BNCs, and ultimately control the activity of the bound enzymes. Smaller MNPs form small clusters with a low affinity for the HRP. While the turnover for the bound fraction is drastically increased, there is no difference in the H 2O 2 inhibitory concentration. Larger MNPs with a higher magnetization aggregate in larger clusters and have a higher affinity for the enzyme and a lower substrate inhibition. All of the BNCs are more active than the free enzyme or the MNPs (BNCs > HRP ≤laquo; MNPs). Since the BNCs show surprising resilience in various reaction conditions, they may pave the way towards new hybrid biocatalysts with increased activities and unique catalytic properties for magnetosensitive enzymatic reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Citation:
Corgié SC, Kahawong P, Duan X, Bowser D, Edward JB, et al. (2012) Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity. Advanced Functional Materials 22: 1940–1951. Available: http://dx.doi.org/10.1002/adfm.201102398.
Publisher:
Wiley-Blackwell
Journal:
Advanced Functional Materials
KAUST Grant Number:
KUS-C1-018-02
Issue Date:
15-Feb-2012
DOI:
10.1002/adfm.201102398
Type:
Article
ISSN:
1616-301X
Sponsors:
P.K. gratefully acknowledges the support of a Thai government scholarship. This publication is based on work supported in part by Award No KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST) and the US Department of Transportation under contract to the Northeast Sun Grant Initiative at Cornell University (US DOT Assistance #DTOS59-07-G-00052). This work made use of the Cornell Center for Materials Research Facilities supported by the National Science Foundation under Award Number DMR-0520404. The authors acknowledge the Nanobiotechnology Center (NBTC) and the Biofuels Research Laboratory (BRL) at Cornell University, Ithaca, NY, USA.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorCorgié, Stéphane C.en
dc.contributor.authorKahawong, Patarawanen
dc.contributor.authorDuan, Xiaonanen
dc.contributor.authorBowser, Danielen
dc.contributor.authorEdward, Joseph B.en
dc.contributor.authorWalker, Larry P.en
dc.contributor.authorGiannelis, Emmanuel P.en
dc.date.accessioned2016-02-28T05:53:37Zen
dc.date.available2016-02-28T05:53:37Zen
dc.date.issued2012-02-15en
dc.identifier.citationCorgié SC, Kahawong P, Duan X, Bowser D, Edward JB, et al. (2012) Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity. Advanced Functional Materials 22: 1940–1951. Available: http://dx.doi.org/10.1002/adfm.201102398.en
dc.identifier.issn1616-301Xen
dc.identifier.doi10.1002/adfm.201102398en
dc.identifier.urihttp://hdl.handle.net/10754/599574en
dc.description.abstractBio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs affect the formation of the BNCs, and ultimately control the activity of the bound enzymes. Smaller MNPs form small clusters with a low affinity for the HRP. While the turnover for the bound fraction is drastically increased, there is no difference in the H 2O 2 inhibitory concentration. Larger MNPs with a higher magnetization aggregate in larger clusters and have a higher affinity for the enzyme and a lower substrate inhibition. All of the BNCs are more active than the free enzyme or the MNPs (BNCs > HRP ≤laquo; MNPs). Since the BNCs show surprising resilience in various reaction conditions, they may pave the way towards new hybrid biocatalysts with increased activities and unique catalytic properties for magnetosensitive enzymatic reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.en
dc.description.sponsorshipP.K. gratefully acknowledges the support of a Thai government scholarship. This publication is based on work supported in part by Award No KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST) and the US Department of Transportation under contract to the Northeast Sun Grant Initiative at Cornell University (US DOT Assistance #DTOS59-07-G-00052). This work made use of the Cornell Center for Materials Research Facilities supported by the National Science Foundation under Award Number DMR-0520404. The authors acknowledge the Nanobiotechnology Center (NBTC) and the Biofuels Research Laboratory (BRL) at Cornell University, Ithaca, NY, USA.en
dc.publisherWiley-Blackwellen
dc.subjectbio-nanotechnologyen
dc.subjectcatalysisen
dc.subjectmagnetic nanoparticlesen
dc.subjectself-assemblyen
dc.subjectstructure-property relationshipsen
dc.titleSelf-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activityen
dc.typeArticleen
dc.identifier.journalAdvanced Functional Materialsen
dc.contributor.institutionCornell University, Ithaca, United Statesen
kaust.grant.numberKUS-C1-018-02en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.