Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis

Handle URI:
http://hdl.handle.net/10754/599436
Title:
Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis
Authors:
Maher, R. C.; Duboviks, V.; Offer, G. J.; Kishimoto, M.; Brandon, N. P.; Cohen, L. F.
Abstract:
Raman spectroscopy is a powerful characterization tool for improving the understanding of solid oxide fuel cells (SOFCs), capable of providing direct, molecularly specific information regarding the physical and chemical processes occurring within functional SOFCs in real time. In this paper we give a summary of the technique itself and highlight ex situ and in situ studies that are particularly relevant for SOFCs. This is followed by a case study of carbon formation on SOFC Ni-based anodes exposed to carbon monoxide (CO) using both ex situ and in situ Raman spectroscopy combined with computational simulations. In situ measurements clearly show that carbon formation is significantly reduced for polarized SOFCs compared to those held at open circuit potential (OCP). Ex situ Raman mapping of the surfaces showed clear variations in the rate of carbon formation across the surface of polarized anodes. Computational simulations describing the geometry of the cell showed that this is due to variations in gas access. These results demonstrate the ability of Raman spectroscopy in combination with traditional characterization tools, to provide detailed understanding of critical processes occurring within functional SOFCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Citation:
Maher RC, Duboviks V, Offer GJ, Kishimoto M, Brandon NP, et al. (2013) Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis. Fuel Cells 13: 455–469. Available: http://dx.doi.org/10.1002/fuce.201200173.
Publisher:
Wiley-Blackwell
Journal:
Fuel Cells
KAUST Grant Number:
KUK-F1-020-21
Issue Date:
30-Jul-2013
DOI:
10.1002/fuce.201200173
Type:
Article
ISSN:
1615-6846
Sponsors:
The authors would like to thank the Engineering andPhysical Sciences Research Council (UK) EPSRC(GB) forfunding, in particular the Supergen fuel cell programme anda Career Acceleration Fellowship for Gregory Offer and fund-ing under EP/J003085/1, and Stephen Cussell in the engi-neering workshop of the Department of Physics. This workwas supported by the R34 JSPS Institutional Program forYoung Researcher Overseas Visits (KM). This publicationwas also based on work supported by Award No KUK-F1-020-21, made by King Abdullah University of Science andTechnology (KAUST).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorMaher, R. C.en
dc.contributor.authorDuboviks, V.en
dc.contributor.authorOffer, G. J.en
dc.contributor.authorKishimoto, M.en
dc.contributor.authorBrandon, N. P.en
dc.contributor.authorCohen, L. F.en
dc.date.accessioned2016-02-28T05:51:05Zen
dc.date.available2016-02-28T05:51:05Zen
dc.date.issued2013-07-30en
dc.identifier.citationMaher RC, Duboviks V, Offer GJ, Kishimoto M, Brandon NP, et al. (2013) Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis. Fuel Cells 13: 455–469. Available: http://dx.doi.org/10.1002/fuce.201200173.en
dc.identifier.issn1615-6846en
dc.identifier.doi10.1002/fuce.201200173en
dc.identifier.urihttp://hdl.handle.net/10754/599436en
dc.description.abstractRaman spectroscopy is a powerful characterization tool for improving the understanding of solid oxide fuel cells (SOFCs), capable of providing direct, molecularly specific information regarding the physical and chemical processes occurring within functional SOFCs in real time. In this paper we give a summary of the technique itself and highlight ex situ and in situ studies that are particularly relevant for SOFCs. This is followed by a case study of carbon formation on SOFC Ni-based anodes exposed to carbon monoxide (CO) using both ex situ and in situ Raman spectroscopy combined with computational simulations. In situ measurements clearly show that carbon formation is significantly reduced for polarized SOFCs compared to those held at open circuit potential (OCP). Ex situ Raman mapping of the surfaces showed clear variations in the rate of carbon formation across the surface of polarized anodes. Computational simulations describing the geometry of the cell showed that this is due to variations in gas access. These results demonstrate the ability of Raman spectroscopy in combination with traditional characterization tools, to provide detailed understanding of critical processes occurring within functional SOFCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.en
dc.description.sponsorshipThe authors would like to thank the Engineering andPhysical Sciences Research Council (UK) EPSRC(GB) forfunding, in particular the Supergen fuel cell programme anda Career Acceleration Fellowship for Gregory Offer and fund-ing under EP/J003085/1, and Stephen Cussell in the engi-neering workshop of the Department of Physics. This workwas supported by the R34 JSPS Institutional Program forYoung Researcher Overseas Visits (KM). This publicationwas also based on work supported by Award No KUK-F1-020-21, made by King Abdullah University of Science andTechnology (KAUST).en
dc.publisherWiley-Blackwellen
dc.subjectCarbonen
dc.subjectCarbon Monoxideen
dc.subjectFuel Cellsen
dc.subjectRaman Spectroscopyen
dc.subjectSolid Oxideen
dc.titleRaman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysisen
dc.typeArticleen
dc.identifier.journalFuel Cellsen
dc.contributor.institutionImperial College London, London, United Kingdomen
dc.contributor.institutionKyoto University, Kyoto, Japanen
kaust.grant.numberKUK-F1-020-21en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.