Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

Handle URI:
http://hdl.handle.net/10754/599198
Title:
Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries
Authors:
Korf, Kevin S.; Lu, Yingying; Kambe, Yu; Archer, Lynden A.
Abstract:
We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.
Citation:
Korf KS, Lu Y, Kambe Y, Archer LA (2014) Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries. Journal of Materials Chemistry A 2: 11866. Available: http://dx.doi.org/10.1039/c4ta02219j.
Publisher:
Royal Society of Chemistry (RSC)
Journal:
Journal of Materials Chemistry A
KAUST Grant Number:
KUS-C1-018-02
Issue Date:
23-Jun-2014
DOI:
10.1039/c4ta02219j
Type:
Article
ISSN:
2050-7488; 2050-7496
Sponsors:
This work was supported by the National Science Foundation, Award no. DMR-1006323 and by Award no. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). Facilities available though the Cornell Center for Materials Research (CCMR) were used for this study (DMR-1120296). The authors thank Dr Ivan Keresztes for the help with the NMR analysis.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorKorf, Kevin S.en
dc.contributor.authorLu, Yingyingen
dc.contributor.authorKambe, Yuen
dc.contributor.authorArcher, Lynden A.en
dc.date.accessioned2016-02-25T13:54:44Zen
dc.date.available2016-02-25T13:54:44Zen
dc.date.issued2014-06-23en
dc.identifier.citationKorf KS, Lu Y, Kambe Y, Archer LA (2014) Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries. Journal of Materials Chemistry A 2: 11866. Available: http://dx.doi.org/10.1039/c4ta02219j.en
dc.identifier.issn2050-7488en
dc.identifier.issn2050-7496en
dc.identifier.doi10.1039/c4ta02219jen
dc.identifier.urihttp://hdl.handle.net/10754/599198en
dc.description.abstractWe report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.en
dc.description.sponsorshipThis work was supported by the National Science Foundation, Award no. DMR-1006323 and by Award no. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). Facilities available though the Cornell Center for Materials Research (CCMR) were used for this study (DMR-1120296). The authors thank Dr Ivan Keresztes for the help with the NMR analysis.en
dc.publisherRoyal Society of Chemistry (RSC)en
dc.titlePiperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteriesen
dc.typeArticleen
dc.identifier.journalJournal of Materials Chemistry Aen
dc.contributor.institutionCornell University, Ithaca, United Statesen
kaust.grant.numberKUS-C1-018-02en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.