Handle URI:
http://hdl.handle.net/10754/598881
Title:
Molecular tilt on monolayer-protected nanoparticles
Authors:
Giomi, L.; Bowick, M. J.; Ma, X.; Majumdar, A.
Abstract:
The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.
Publisher:
IOP Publishing
Journal:
EPL (Europhysics Letters)
KAUST Grant Number:
KUK-C1-013-04
Issue Date:
1-Feb-2012
DOI:
10.1209/0295-5075/97/36005
Type:
Article
ISSN:
0295-5075; 1286-4854
Sponsors:
LG and MJB would like to thank F. STELLACCI for the insightful conversations that inspired this work. MJB thanks T. ASEFA for enlightening discussions of the chemistry of SAMs. We gratefully acknowledge support from the Wyss Institute (LG), the Harvard Kavli Institue for Bionano Science & Technology (LG), the NSF Harvard MRSEC (LG). The work of MJB and XM was supported by the National Science Foundation grant DMR-0808812. AM is supported by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST), to the Oxford Centre for Collaborative Applied Mathematics and an EPSRC Career Acceleration Fellowship EP/J001686/1.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorGiomi, L.en
dc.contributor.authorBowick, M. J.en
dc.contributor.authorMa, X.en
dc.contributor.authorMajumdar, A.en
dc.date.accessioned2016-02-25T13:43:00Zen
dc.date.available2016-02-25T13:43:00Zen
dc.date.issued2012-02-01en
dc.identifier.issn0295-5075en
dc.identifier.issn1286-4854en
dc.identifier.doi10.1209/0295-5075/97/36005en
dc.identifier.urihttp://hdl.handle.net/10754/598881en
dc.description.abstractThe structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.en
dc.description.sponsorshipLG and MJB would like to thank F. STELLACCI for the insightful conversations that inspired this work. MJB thanks T. ASEFA for enlightening discussions of the chemistry of SAMs. We gratefully acknowledge support from the Wyss Institute (LG), the Harvard Kavli Institue for Bionano Science & Technology (LG), the NSF Harvard MRSEC (LG). The work of MJB and XM was supported by the National Science Foundation grant DMR-0808812. AM is supported by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST), to the Oxford Centre for Collaborative Applied Mathematics and an EPSRC Career Acceleration Fellowship EP/J001686/1.en
dc.publisherIOP Publishingen
dc.titleMolecular tilt on monolayer-protected nanoparticlesen
dc.typeArticleen
dc.identifier.journalEPL (Europhysics Letters)en
dc.contributor.institutionHarvard University, Cambridge, United Statesen
dc.contributor.institutionSyracuse University, Syracuse, United Statesen
dc.contributor.institutionUniversity of Oxford, Oxford, United Kingdomen
kaust.grant.numberKUK-C1-013-04en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.