Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

Handle URI:
http://hdl.handle.net/10754/598830
Title:
Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor
Authors:
LaBry, Zachary; Shanbhogue, Santosh; Ghoniem, Ahmed
Abstract:
Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.
Publisher:
American Institute of Aeronautics and Astronautics (AIAA)
Journal:
49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
KAUST Grant Number:
KUS-110-010-01
Issue Date:
4-Jan-2011
DOI:
10.2514/6.2011-515
Type:
Conference Paper
Sponsors:
This work was undertaken with funding from the King Abdullah University of Science and Technology undergrant number KUS-110-010-01.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorLaBry, Zacharyen
dc.contributor.authorShanbhogue, Santoshen
dc.contributor.authorGhoniem, Ahmeden
dc.date.accessioned2016-02-25T13:42:03Zen
dc.date.available2016-02-25T13:42:03Zen
dc.date.issued2011-01-04en
dc.identifier.doi10.2514/6.2011-515en
dc.identifier.urihttp://hdl.handle.net/10754/598830en
dc.description.abstractCombustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.en
dc.description.sponsorshipThis work was undertaken with funding from the King Abdullah University of Science and Technology undergrant number KUS-110-010-01.en
dc.publisherAmerican Institute of Aeronautics and Astronautics (AIAA)en
dc.titleMicrojet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustoren
dc.typeConference Paperen
dc.identifier.journal49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Expositionen
dc.contributor.institutionMassachusetts Institute of Technologyen
kaust.grant.numberKUS-110-010-01en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.