Measuring the oxygen profile and permeation flux across an ion transport
Handle URI:
http://hdl.handle.net/10754/598783
Title:
Measuring the oxygen profile and permeation flux across an ion transport <mml:math altimg="si0029.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSch
Authors:
Hunt, Anton; Dimitrakopoulos, Georgios; Kirchen, Patrick; Ghoniem, Ahmed F.
Abstract:
A novel ion transport membrane laboratory reactor is introduced which can sample gases at the La0.9Ca0.1FeO3 -δ membrane surface at high temperature flux conditions. Experimental data (spatial profiles and operating condition sensitivity) is presented and used to validate detailed 1D and 2D numerical models under inert (CO2 sweep) operating conditions; the numerical models account for mass transfer resistances to the membrane surface. Bypassing the mass transfer resistances experimentally allows for direct parameterization of a three resistance oxygen flux model; a unique solution method based on bespoke experimental datasets to find surface exchange reaction rate constants is demonstrated. Membrane operating regimes and oxygen off-stoichiometric coefficients can thus be determined highlighting the importance of surface exchange studies and the obvious requirement to reduce sweep surface P O2 through oxyfuel reaction integration and/or flow field adjustments. A more complex first-order flux model is also proposed and tested incorporating the surface oxygen ion concentrations in the surface exchange reactions; this is found to give similar material parameters to the simpler zero-order model studied in the literature for this particular case. © 2014 Elsevier B.V.
Citation:
Hunt A, Dimitrakopoulos G, Kirchen P, Ghoniem AF (2014) Measuring the oxygen profile and permeation flux across an ion transport <mml:math altimg=“si0029.gif” overflow=“scroll” xmlns:xocs=“http://www.elsevier.com/xml/xocs/dtd” xmlns:xs=“http://www.w3.org/2001/XMLSchema” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance” xmlns=“http://www.elsevier.com/xml/ja/dtd” xmlns:ja=“http://www.elsevier.com/xml/ja/dtd” xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:tb=“http://www.elsevier.com/xml/common/table/dtd” xmlns:sb=“http://www.elsevier.com/xml/common/struct-bib/dtd” xmlns:ce=“http://www.elsevier.com/xml/common/dtd” xmlns:xlink=“http://www.w3.org/1999/xlink” xmlns:cals=“http://www.elsevier.com/xml/common/cals/dtd” xmlns:sa=“http://www.elsevier.com/xml/common/struct-aff/dtd”><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>La</mml:mi></mml:mrow><mml:mrow><mml:mn>0.9</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Ca</mml:mi></mml:mrow><mml:mrow><mml:mn>0.1</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>FeO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>−</mml:mo><mml:mi>δ</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:math> membrane and the development and validation of a multistep surface exchange model. Journal of Membrane Science 468: 62–72. Available: http://dx.doi.org/10.1016/j.memsci.2014.05.043.
Publisher:
Elsevier BV
Journal:
Journal of Membrane Science
KAUST Grant Number:
KUS-L1-010-01
Issue Date:
Oct-2014
DOI:
10.1016/j.memsci.2014.05.043
Type:
Article
ISSN:
0376-7388
Sponsors:
The authors would like to thank the King Fahd University of Petroleum and Minerals (KFUPM) in Dhahran, Saudi Arabia, for funding the research reported in this paper through the Center of Clean Water and Clean Energy at Massachusetts Institute of Technology and KFUPM under project number R2-CE-08. This work is also supported through funding from the King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia under project number KUS-L1-010-01. A special thanks is also extended to Air Products and Chemicals, Inc. (APCI) for their guidance in this field and for the sharing of knowledge regarding LCF membranes; additionally the cooperative efforts with Ceramatec to produce the LCF membranes for the experimental reactor in this work are gratefully acknowledged.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorHunt, Antonen
dc.contributor.authorDimitrakopoulos, Georgiosen
dc.contributor.authorKirchen, Patricken
dc.contributor.authorGhoniem, Ahmed F.en
dc.date.accessioned2016-02-25T13:41:08Zen
dc.date.available2016-02-25T13:41:08Zen
dc.date.issued2014-10en
dc.identifier.citationHunt A, Dimitrakopoulos G, Kirchen P, Ghoniem AF (2014) Measuring the oxygen profile and permeation flux across an ion transport <mml:math altimg=“si0029.gif” overflow=“scroll” xmlns:xocs=“http://www.elsevier.com/xml/xocs/dtd” xmlns:xs=“http://www.w3.org/2001/XMLSchema” xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance” xmlns=“http://www.elsevier.com/xml/ja/dtd” xmlns:ja=“http://www.elsevier.com/xml/ja/dtd” xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:tb=“http://www.elsevier.com/xml/common/table/dtd” xmlns:sb=“http://www.elsevier.com/xml/common/struct-bib/dtd” xmlns:ce=“http://www.elsevier.com/xml/common/dtd” xmlns:xlink=“http://www.w3.org/1999/xlink” xmlns:cals=“http://www.elsevier.com/xml/common/cals/dtd” xmlns:sa=“http://www.elsevier.com/xml/common/struct-aff/dtd”><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>La</mml:mi></mml:mrow><mml:mrow><mml:mn>0.9</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Ca</mml:mi></mml:mrow><mml:mrow><mml:mn>0.1</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>FeO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>−</mml:mo><mml:mi>δ</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:math> membrane and the development and validation of a multistep surface exchange model. Journal of Membrane Science 468: 62–72. Available: http://dx.doi.org/10.1016/j.memsci.2014.05.043.en
dc.identifier.issn0376-7388en
dc.identifier.doi10.1016/j.memsci.2014.05.043en
dc.identifier.urihttp://hdl.handle.net/10754/598783en
dc.description.abstractA novel ion transport membrane laboratory reactor is introduced which can sample gases at the La0.9Ca0.1FeO3 -δ membrane surface at high temperature flux conditions. Experimental data (spatial profiles and operating condition sensitivity) is presented and used to validate detailed 1D and 2D numerical models under inert (CO2 sweep) operating conditions; the numerical models account for mass transfer resistances to the membrane surface. Bypassing the mass transfer resistances experimentally allows for direct parameterization of a three resistance oxygen flux model; a unique solution method based on bespoke experimental datasets to find surface exchange reaction rate constants is demonstrated. Membrane operating regimes and oxygen off-stoichiometric coefficients can thus be determined highlighting the importance of surface exchange studies and the obvious requirement to reduce sweep surface P O2 through oxyfuel reaction integration and/or flow field adjustments. A more complex first-order flux model is also proposed and tested incorporating the surface oxygen ion concentrations in the surface exchange reactions; this is found to give similar material parameters to the simpler zero-order model studied in the literature for this particular case. © 2014 Elsevier B.V.en
dc.description.sponsorshipThe authors would like to thank the King Fahd University of Petroleum and Minerals (KFUPM) in Dhahran, Saudi Arabia, for funding the research reported in this paper through the Center of Clean Water and Clean Energy at Massachusetts Institute of Technology and KFUPM under project number R2-CE-08. This work is also supported through funding from the King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia under project number KUS-L1-010-01. A special thanks is also extended to Air Products and Chemicals, Inc. (APCI) for their guidance in this field and for the sharing of knowledge regarding LCF membranes; additionally the cooperative efforts with Ceramatec to produce the LCF membranes for the experimental reactor in this work are gratefully acknowledged.en
dc.publisherElsevier BVen
dc.subjectIon transport membraneen
dc.subjectLCFen
dc.subjectOxygen flux modelen
dc.subjectOxygen permeationen
dc.subjectSurface oxygenen
dc.titleMeasuring the oxygen profile and permeation flux across an ion transport <mml:math altimg="si0029.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchen
dc.typeArticleen
dc.identifier.journalJournal of Membrane Scienceen
dc.contributor.institutionMassachusetts Institute of Technology, Cambridge, United Statesen
dc.contributor.institutionThe University of British Columbia, Vancouver, Canadaen
kaust.grant.numberKUS-L1-010-01en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.