Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling

Handle URI:
http://hdl.handle.net/10754/598716
Title:
Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling
Authors:
Burkhardt, Stephen E.; Bois, Joackim; Tarascon, Jean-Marie; Hennig, Richard G.; Abruña, Héctor D.
Abstract:
The full realization of a renewable energy strategy hinges upon electrical energy storage (EES). EES devices play a key role in storing energy from renewable sources (which are inherently intermittent), to efficient transmission (e.g., grid load-leveling), and finally into the electrification of transportation. Organic materials represent a promising class of electrode active materials for Li-ion and post-Li-ion batteries. Organics consist of low-cost, lightweight, widely available materials, and their properties can be rationally tuned using the well-established principles of organic chemistry. Within the class of organic EES materials, carboxylates distinguish themselves for Li-ion anode materials based on their observed thermal stability, rate capability, and high cyclability. Further, many of the carboxylates studied to date can be synthesized from renewable or waste feedstocks. This report begins with a preliminary molecular density-functional theory (DFT) study, in which the calculated molecular properties of a set of 12 known Li-ion electrode materials based on carboxylate and carbonyl redox couples are compared to literature data. Based on the agreement between theoretical and experimental data, an expanded study was undertaken to identify promising materials and establish design principles for anodes based on Li-carboxylate salts. Predictive computational studies represent an important step forward for the identification of organic anode materials. © 2012 American Chemical Society.
Citation:
Burkhardt SE, Bois J, Tarascon J-M, Hennig RG, Abruña HD (2013) Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling. Chem Mater 25: 132–141. Available: http://dx.doi.org/10.1021/cm302839z.
Publisher:
American Chemical Society (ACS)
Journal:
Chemistry of Materials
KAUST Grant Number:
KUS-C1-018-02
Issue Date:
22-Jan-2013
DOI:
10.1021/cm302839z
Type:
Article
ISSN:
0897-4756; 1520-5002
Sponsors:
J.B. and J.M.T. are thankful to S. Grugeon and M. Armand for useful discussions. This publication is based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). Computational work by R.G.H. was supported in part by the Energy Materials Center at Cornell (EMC<SUP>2</SUP>), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001086.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorBurkhardt, Stephen E.en
dc.contributor.authorBois, Joackimen
dc.contributor.authorTarascon, Jean-Marieen
dc.contributor.authorHennig, Richard G.en
dc.contributor.authorAbruña, Héctor D.en
dc.date.accessioned2016-02-25T13:34:59Zen
dc.date.available2016-02-25T13:34:59Zen
dc.date.issued2013-01-22en
dc.identifier.citationBurkhardt SE, Bois J, Tarascon J-M, Hennig RG, Abruña HD (2013) Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling. Chem Mater 25: 132–141. Available: http://dx.doi.org/10.1021/cm302839z.en
dc.identifier.issn0897-4756en
dc.identifier.issn1520-5002en
dc.identifier.doi10.1021/cm302839zen
dc.identifier.urihttp://hdl.handle.net/10754/598716en
dc.description.abstractThe full realization of a renewable energy strategy hinges upon electrical energy storage (EES). EES devices play a key role in storing energy from renewable sources (which are inherently intermittent), to efficient transmission (e.g., grid load-leveling), and finally into the electrification of transportation. Organic materials represent a promising class of electrode active materials for Li-ion and post-Li-ion batteries. Organics consist of low-cost, lightweight, widely available materials, and their properties can be rationally tuned using the well-established principles of organic chemistry. Within the class of organic EES materials, carboxylates distinguish themselves for Li-ion anode materials based on their observed thermal stability, rate capability, and high cyclability. Further, many of the carboxylates studied to date can be synthesized from renewable or waste feedstocks. This report begins with a preliminary molecular density-functional theory (DFT) study, in which the calculated molecular properties of a set of 12 known Li-ion electrode materials based on carboxylate and carbonyl redox couples are compared to literature data. Based on the agreement between theoretical and experimental data, an expanded study was undertaken to identify promising materials and establish design principles for anodes based on Li-carboxylate salts. Predictive computational studies represent an important step forward for the identification of organic anode materials. © 2012 American Chemical Society.en
dc.description.sponsorshipJ.B. and J.M.T. are thankful to S. Grugeon and M. Armand for useful discussions. This publication is based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). Computational work by R.G.H. was supported in part by the Energy Materials Center at Cornell (EMC<SUP>2</SUP>), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001086.en
dc.publisherAmerican Chemical Society (ACS)en
dc.subjectcomputational chemistryen
dc.subjectelectrochemistryen
dc.subjectlithium carboxylateen
dc.subjectlithium-ion batteryen
dc.subjectorganic anodeen
dc.subjectorganic energy storageen
dc.titleLi-Carboxylate Anode Structure-Property Relationships from Molecular Modelingen
dc.typeArticleen
dc.identifier.journalChemistry of Materialsen
dc.contributor.institutionCornell University, Ithaca, United Statesen
dc.contributor.institutionUniversite de Picardie Jules Verne, Amiens, Franceen
dc.contributor.institutionDuPont, Wilmington, United Statesen
kaust.grant.numberKUS-C1-018-02en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.