Highly Conductive Cu 2– x S Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition

Handle URI:
http://hdl.handle.net/10754/598499
Title:
Highly Conductive Cu 2– x S Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition
Authors:
Otelaja, Obafemi O.; Ha, Don-Hyung; Ly, Tiffany; Zhang, Haitao; Robinson, Richard D.
Abstract:
© 2014 American Chemical Society. A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting films is presented. Ammonium sulfide is utilized for connecting the nanoparticles via ligand removal, which transforms the as-deposited insulating films into highly conducting films. Electronic properties of the treated films are characterized with a combination of Hall effect measurements, field-effect transistor measurements, temperature-dependent conductivity measurements, and capacitance-voltage measurements, revealing their highly doped p-type semiconducting nature. The spin-cast nanoparticle films have carrier concentration of ∼1019 cm-3, Hall mobilities of ∼3 to 4 cm2 V-1 s-1, and electrical conductivities of ∼5 to 6 S·cm-1. Our films have hole mobilities that are 1-4 orders of magnitude higher than hole mobilities previously reported for heat-treated nanoparticle films of HgTe, InSb, PbS, PbTe, and PbSe. We show that electrophoretic deposition (EPD) as a method for nanoparticle film assembly leads to an order of magnitude enhancement in film conductivity (∼75 S·cm-1) over conventional spin-casting, creating copper sulfide nanoparticle films with conductivities comparable to bulk films formed through physical deposition methods. The X-ray diffraction patterns of the Cu2-xS films, with and without ligand removal, match the Djurleite phase (Cu1.94S) of copper sulfide and show that the nanoparticles maintain finite size after the ammonium sulfide processing. The high conductivities reported are attributed to better interparticle coupling through the ammonium sulfide treatment. This approach presents a scalable room-temperature route for fabricating highly conducting nanoparticle assemblies for large-area electronic and optoelectronic applications.
Citation:
Otelaja OO, Ha D-H, Ly T, Zhang H, Robinson RD (2014) Highly Conductive Cu 2– x S Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition . ACS Applied Materials & Interfaces 6: 18911–18920. Available: http://dx.doi.org/10.1021/am504785f.
Publisher:
American Chemical Society (ACS)
Journal:
ACS Applied Materials & Interfaces
KAUST Grant Number:
KUS-C1-018-02
Issue Date:
12-Nov-2014
DOI:
10.1021/am504785f
PubMed ID:
25314692
Type:
Article
ISSN:
1944-8244; 1944-8252
Sponsors:
We thank M. G. Spencer, J. Shu, S. Kriske, and K. Whitham for helpful discussions. The work was supported in part by the National Science Foundation under Agreement No. DMR-1149036, and in part by the Energy Materials Center at Cornell (EMC<SUP>2</SUP>), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under Award Number DE-SC0001086. O.O.O. was fully supported through the NSF (DMR-1149036). This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1120296). This publication is based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). Device fabrication was performed at the Cornell Nanoscale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorOtelaja, Obafemi O.en
dc.contributor.authorHa, Don-Hyungen
dc.contributor.authorLy, Tiffanyen
dc.contributor.authorZhang, Haitaoen
dc.contributor.authorRobinson, Richard D.en
dc.date.accessioned2016-02-25T13:31:05Zen
dc.date.available2016-02-25T13:31:05Zen
dc.date.issued2014-11-12en
dc.identifier.citationOtelaja OO, Ha D-H, Ly T, Zhang H, Robinson RD (2014) Highly Conductive Cu 2– x S Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition . ACS Applied Materials & Interfaces 6: 18911–18920. Available: http://dx.doi.org/10.1021/am504785f.en
dc.identifier.issn1944-8244en
dc.identifier.issn1944-8252en
dc.identifier.pmid25314692en
dc.identifier.doi10.1021/am504785fen
dc.identifier.urihttp://hdl.handle.net/10754/598499en
dc.description.abstract© 2014 American Chemical Society. A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting films is presented. Ammonium sulfide is utilized for connecting the nanoparticles via ligand removal, which transforms the as-deposited insulating films into highly conducting films. Electronic properties of the treated films are characterized with a combination of Hall effect measurements, field-effect transistor measurements, temperature-dependent conductivity measurements, and capacitance-voltage measurements, revealing their highly doped p-type semiconducting nature. The spin-cast nanoparticle films have carrier concentration of ∼1019 cm-3, Hall mobilities of ∼3 to 4 cm2 V-1 s-1, and electrical conductivities of ∼5 to 6 S·cm-1. Our films have hole mobilities that are 1-4 orders of magnitude higher than hole mobilities previously reported for heat-treated nanoparticle films of HgTe, InSb, PbS, PbTe, and PbSe. We show that electrophoretic deposition (EPD) as a method for nanoparticle film assembly leads to an order of magnitude enhancement in film conductivity (∼75 S·cm-1) over conventional spin-casting, creating copper sulfide nanoparticle films with conductivities comparable to bulk films formed through physical deposition methods. The X-ray diffraction patterns of the Cu2-xS films, with and without ligand removal, match the Djurleite phase (Cu1.94S) of copper sulfide and show that the nanoparticles maintain finite size after the ammonium sulfide processing. The high conductivities reported are attributed to better interparticle coupling through the ammonium sulfide treatment. This approach presents a scalable room-temperature route for fabricating highly conducting nanoparticle assemblies for large-area electronic and optoelectronic applications.en
dc.description.sponsorshipWe thank M. G. Spencer, J. Shu, S. Kriske, and K. Whitham for helpful discussions. The work was supported in part by the National Science Foundation under Agreement No. DMR-1149036, and in part by the Energy Materials Center at Cornell (EMC<SUP>2</SUP>), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under Award Number DE-SC0001086. O.O.O. was fully supported through the NSF (DMR-1149036). This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1120296). This publication is based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). Device fabrication was performed at the Cornell Nanoscale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765).en
dc.publisherAmerican Chemical Society (ACS)en
dc.subjectconductivityen
dc.subjectcopper sulfideen
dc.subjectelectrophoretic depositionen
dc.subjecthopping transporten
dc.subjectnanoparticle filmsen
dc.titleHighly Conductive Cu 2– x S Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Depositionen
dc.typeArticleen
dc.identifier.journalACS Applied Materials & Interfacesen
dc.contributor.institutionCornell University, Ithaca, United Statesen
kaust.grant.numberKUS-C1-018-02en

Related articles on PubMed

All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.