High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

Handle URI:
http://hdl.handle.net/10754/598471
Title:
High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites
Authors:
Schaefer, Jennifer L.; Yanga, Dennis A.; Archer, Lynden A.
Abstract:
High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.
Citation:
Schaefer JL, Yanga DA, Archer LA (2013) High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites. Chem Mater 25: 834–839. Available: http://dx.doi.org/10.1021/cm303091j.
Publisher:
American Chemical Society (ACS)
Journal:
Chemistry of Materials
KAUST Grant Number:
KUS-C1-018-02
Issue Date:
26-Mar-2013
DOI:
10.1021/cm303091j
Type:
Article
ISSN:
0897-4756; 1520-5002
Sponsors:
This work was supported by the National Science Foundation, Award No. DMR-1006323 and by award number KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). The authors acknowledge use of the Cornell University NMR Facility in the Department of Chemistry & Chemical Biology. J.L.S. acknowledges support from a NSF GK-12 Grassroots Fellowship.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorSchaefer, Jennifer L.en
dc.contributor.authorYanga, Dennis A.en
dc.contributor.authorArcher, Lynden A.en
dc.date.accessioned2016-02-25T13:21:19Zen
dc.date.available2016-02-25T13:21:19Zen
dc.date.issued2013-03-26en
dc.identifier.citationSchaefer JL, Yanga DA, Archer LA (2013) High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites. Chem Mater 25: 834–839. Available: http://dx.doi.org/10.1021/cm303091j.en
dc.identifier.issn0897-4756en
dc.identifier.issn1520-5002en
dc.identifier.doi10.1021/cm303091jen
dc.identifier.urihttp://hdl.handle.net/10754/598471en
dc.description.abstractHigh lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.en
dc.description.sponsorshipThis work was supported by the National Science Foundation, Award No. DMR-1006323 and by award number KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). The authors acknowledge use of the Cornell University NMR Facility in the Department of Chemistry & Chemical Biology. J.L.S. acknowledges support from a NSF GK-12 Grassroots Fellowship.en
dc.publisherAmerican Chemical Society (ACS)en
dc.subjectbatteriesen
dc.subjectelectrolytesen
dc.subjectlithium dendritesen
dc.subjectlithium saltsen
dc.subjectnanoparticlesen
dc.titleHigh Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Compositesen
dc.typeArticleen
dc.identifier.journalChemistry of Materialsen
dc.contributor.institutionCornell University, Ithaca, United Statesen
kaust.grant.numberKUS-C1-018-02en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.