First-arrival Tomography Using the Double-square-root Equation Solver Stepping in Subsurface Offset

Handle URI:
http://hdl.handle.net/10754/598333
Title:
First-arrival Tomography Using the Double-square-root Equation Solver Stepping in Subsurface Offset
Authors:
Serdyukov, A.S.; Duchkov, A.A.
Abstract:
Double-square-root (DSR) equation can be viewed as a Hamilton-Jacobi equation describing kinematics of downward data continuation in depth. It describes simultaneous propagation of source and receiver rays assuming that they are nowhere horizontal. Thus it is not suitable for describing diving waves. This equation can be rewritten in a new form when stepping is made in subsurface offset instead of depth. In this form it can be used for describing traveltimes of diving waves in prestack seismic data. This equation can be solved using WENO-RK numerical scheme. Prestack traveltimes (for multiple sources) can be computed in one run thus speeding up solution of the forward problem. We derive linearized version of this new DSR equation that can be used for tomographic inversion of first-arrival traveltimes. Here we used a ray-based tomographic inversion consisting of the following steps: get numerical solution of the offset DSR equation in the background velocity model, back trace DSR rays connecting receivers to sources, update velocity model using truncated SVD pseudoinverse. This approach was tested on a synthetic model generating diving waves.
Citation:
Serdyukov AS, Duchkov AA (2013) First-arrival Tomography Using the Double-square-root Equation Solver Stepping in Subsurface Offset. London 2013, 75th eage conference en exhibition incorporating SPE Europec. Available: http://dx.doi.org/10.3997/2214-4609.20130942.
Publisher:
EAGE Publications
Journal:
London 2013, 75th eage conference en exhibition incorporating SPE Europec
Issue Date:
2013
DOI:
10.3997/2214-4609.20130942
Type:
Conference Paper
Sponsors:
Research was partly supported by Saudi Aramco and KAUST. Authors are grateful to Jean Virieux andTariq Alkhalifah for useful discussions.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorSerdyukov, A.S.en
dc.contributor.authorDuchkov, A.A.en
dc.date.accessioned2016-02-25T13:18:53Zen
dc.date.available2016-02-25T13:18:53Zen
dc.date.issued2013en
dc.identifier.citationSerdyukov AS, Duchkov AA (2013) First-arrival Tomography Using the Double-square-root Equation Solver Stepping in Subsurface Offset. London 2013, 75th eage conference en exhibition incorporating SPE Europec. Available: http://dx.doi.org/10.3997/2214-4609.20130942.en
dc.identifier.doi10.3997/2214-4609.20130942en
dc.identifier.urihttp://hdl.handle.net/10754/598333en
dc.description.abstractDouble-square-root (DSR) equation can be viewed as a Hamilton-Jacobi equation describing kinematics of downward data continuation in depth. It describes simultaneous propagation of source and receiver rays assuming that they are nowhere horizontal. Thus it is not suitable for describing diving waves. This equation can be rewritten in a new form when stepping is made in subsurface offset instead of depth. In this form it can be used for describing traveltimes of diving waves in prestack seismic data. This equation can be solved using WENO-RK numerical scheme. Prestack traveltimes (for multiple sources) can be computed in one run thus speeding up solution of the forward problem. We derive linearized version of this new DSR equation that can be used for tomographic inversion of first-arrival traveltimes. Here we used a ray-based tomographic inversion consisting of the following steps: get numerical solution of the offset DSR equation in the background velocity model, back trace DSR rays connecting receivers to sources, update velocity model using truncated SVD pseudoinverse. This approach was tested on a synthetic model generating diving waves.en
dc.description.sponsorshipResearch was partly supported by Saudi Aramco and KAUST. Authors are grateful to Jean Virieux andTariq Alkhalifah for useful discussions.en
dc.publisherEAGE Publicationsen
dc.titleFirst-arrival Tomography Using the Double-square-root Equation Solver Stepping in Subsurface Offseten
dc.typeConference Paperen
dc.identifier.journalLondon 2013, 75th eage conference en exhibition incorporating SPE Europecen
dc.contributor.institutionNovosibirsk State Universityen
dc.contributor.institutionIPGG SB RASen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.