Effects of Bonding Types and Functional Groups on CO 2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materials

Handle URI:
http://hdl.handle.net/10754/598069
Title:
Effects of Bonding Types and Functional Groups on CO 2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materials
Authors:
Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa
Abstract:
Novel liquid-like nanoparticle organic hybrid materials (NOHMs) which possess unique features including negligible vapor pressure and a high degree of tunability were synthesized and their physical and chemical properties as well as CO 2 capture capacities were investigated. NOHMs can be classified based on the synthesis methods involving different bonding types, the existence of linkers, and the addition of task-specific functional groups including amines for CO 2 capture. As a canopy of polymeric chains was grafted onto the nanoparticle cores, the thermal stability of the resulting NOHMs was improved. In order to isolate the entropy effect during CO 2 capture, NOHMs were first prepared using polymers that do not contain functional groups with strong chemical affinity toward CO 2. However, it was found that even ether groups on the polymeric canopy contributed to CO 2 capture in NOHMs via Lewis acid-base interactions, although this effect was insignificant compared to the effect of task-specific functional groups such as amine. In all cases, a higher partial pressure of CO 2 was more favorable for CO 2 capture, while a higher temperature caused an adverse effect. Multicyclic CO 2 capture tests confirmed superior recyclability of NOHMs and NOHMs also showed a higher selectivity toward CO 2 over N 2O, O 2 and N 2. © 2011 American Chemical Society.
Citation:
Lin K-YA, Park A-HA (2011) Effects of Bonding Types and Functional Groups on CO 2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materials . Environ Sci Technol 45: 6633–6639. Available: http://dx.doi.org/10.1021/es200146g.
Publisher:
American Chemical Society (ACS)
Journal:
Environmental Science & Technology
KAUST Grant Number:
KUS-C1-018-02
Issue Date:
Aug-2011
DOI:
10.1021/es200146g
PubMed ID:
21675772
Type:
Article
ISSN:
0013-936X; 1520-5851
Sponsors:
This publication was based on work supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorLin, Kun-Yi Andrewen
dc.contributor.authorPark, Ah-Hyung Alissaen
dc.date.accessioned2016-02-25T13:12:04Zen
dc.date.available2016-02-25T13:12:04Zen
dc.date.issued2011-08en
dc.identifier.citationLin K-YA, Park A-HA (2011) Effects of Bonding Types and Functional Groups on CO 2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materials . Environ Sci Technol 45: 6633–6639. Available: http://dx.doi.org/10.1021/es200146g.en
dc.identifier.issn0013-936Xen
dc.identifier.issn1520-5851en
dc.identifier.pmid21675772en
dc.identifier.doi10.1021/es200146gen
dc.identifier.urihttp://hdl.handle.net/10754/598069en
dc.description.abstractNovel liquid-like nanoparticle organic hybrid materials (NOHMs) which possess unique features including negligible vapor pressure and a high degree of tunability were synthesized and their physical and chemical properties as well as CO 2 capture capacities were investigated. NOHMs can be classified based on the synthesis methods involving different bonding types, the existence of linkers, and the addition of task-specific functional groups including amines for CO 2 capture. As a canopy of polymeric chains was grafted onto the nanoparticle cores, the thermal stability of the resulting NOHMs was improved. In order to isolate the entropy effect during CO 2 capture, NOHMs were first prepared using polymers that do not contain functional groups with strong chemical affinity toward CO 2. However, it was found that even ether groups on the polymeric canopy contributed to CO 2 capture in NOHMs via Lewis acid-base interactions, although this effect was insignificant compared to the effect of task-specific functional groups such as amine. In all cases, a higher partial pressure of CO 2 was more favorable for CO 2 capture, while a higher temperature caused an adverse effect. Multicyclic CO 2 capture tests confirmed superior recyclability of NOHMs and NOHMs also showed a higher selectivity toward CO 2 over N 2O, O 2 and N 2. © 2011 American Chemical Society.en
dc.description.sponsorshipThis publication was based on work supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST).en
dc.publisherAmerican Chemical Society (ACS)en
dc.titleEffects of Bonding Types and Functional Groups on CO 2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materialsen
dc.typeArticleen
dc.identifier.journalEnvironmental Science & Technologyen
dc.contributor.institutionColumbia University in the City of New York, New York, United Statesen
kaust.grant.numberKUS-C1-018-02en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.