Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems

Handle URI:
http://hdl.handle.net/10754/598026
Title:
Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems
Authors:
Khajuria, Harish; Pistikopoulos, Efstratios N.
Abstract:
Pressure swing adsorption (PSA) is a flexible, albeit complex gas separation system. Due to its inherent nonlinear nature and discontinuous operation, the design of a model based PSA controller, especially with varying operating conditions, is a challenging task. This work focuses on the design of an explicit/multi-parametric model predictive controller for a PSA system. Based on a system involving four adsorbent beds separating 70% H2, 30% CH4 mixture into high purity hydrogen, the key controller objective is to fast track H2 purity to a set point value of 99.99%. To perform this task, a rigorous and systematic framework is employed. First, a high fidelity detailed dynamic model is built to represent the system's real operation, and understand its dynamic behavior. The model is then used to derive appropriate linear models by applying suitable system identification techniques. For the reduced models, a model predictive control (MPC) step is formulated, where latest developments in multi-parametric programming and control are applied to derive a novel explicit MPC controller. To test the performance of the designed controller, closed loop simulations are performed where the dynamic model is used as the virtual plant. Comparison studies of the derived explicit MPC controller are also performed with conventional PID controllers. © 2010 Elsevier Ltd. All rights reserved.
Citation:
Khajuria H, Pistikopoulos EN (2011) Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems. Journal of Process Control 21: 151–163. Available: http://dx.doi.org/10.1016/j.jprocont.2010.10.021.
Publisher:
Elsevier BV
Journal:
Journal of Process Control
Issue Date:
Jan-2011
DOI:
10.1016/j.jprocont.2010.10.021
Type:
Article
ISSN:
0959-1524
Sponsors:
Financial support from the Royal Commission for the Exhibition of 1851, ParOS Ltd., EU project HY2SEPS (contract number: 019887), and KAUST is sincerely acknowledged. The authors would also like to thank HY2SEPS for kindly providing the experimental data for the gas solid system.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorKhajuria, Harishen
dc.contributor.authorPistikopoulos, Efstratios N.en
dc.date.accessioned2016-02-25T13:11:14Zen
dc.date.available2016-02-25T13:11:14Zen
dc.date.issued2011-01en
dc.identifier.citationKhajuria H, Pistikopoulos EN (2011) Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems. Journal of Process Control 21: 151–163. Available: http://dx.doi.org/10.1016/j.jprocont.2010.10.021.en
dc.identifier.issn0959-1524en
dc.identifier.doi10.1016/j.jprocont.2010.10.021en
dc.identifier.urihttp://hdl.handle.net/10754/598026en
dc.description.abstractPressure swing adsorption (PSA) is a flexible, albeit complex gas separation system. Due to its inherent nonlinear nature and discontinuous operation, the design of a model based PSA controller, especially with varying operating conditions, is a challenging task. This work focuses on the design of an explicit/multi-parametric model predictive controller for a PSA system. Based on a system involving four adsorbent beds separating 70% H2, 30% CH4 mixture into high purity hydrogen, the key controller objective is to fast track H2 purity to a set point value of 99.99%. To perform this task, a rigorous and systematic framework is employed. First, a high fidelity detailed dynamic model is built to represent the system's real operation, and understand its dynamic behavior. The model is then used to derive appropriate linear models by applying suitable system identification techniques. For the reduced models, a model predictive control (MPC) step is formulated, where latest developments in multi-parametric programming and control are applied to derive a novel explicit MPC controller. To test the performance of the designed controller, closed loop simulations are performed where the dynamic model is used as the virtual plant. Comparison studies of the derived explicit MPC controller are also performed with conventional PID controllers. © 2010 Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipFinancial support from the Royal Commission for the Exhibition of 1851, ParOS Ltd., EU project HY2SEPS (contract number: 019887), and KAUST is sincerely acknowledged. The authors would also like to thank HY2SEPS for kindly providing the experimental data for the gas solid system.en
dc.publisherElsevier BVen
dc.subjectExplicit MPCen
dc.subjectMulti-parametric programmingen
dc.subjectPSAen
dc.subjectSystem identificationen
dc.titleDynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systemsen
dc.typeArticleen
dc.identifier.journalJournal of Process Controlen
dc.contributor.institutionImperial College London, London, United Kingdomen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.