Designing block copolymer architectures for targeted membrane performance

Handle URI:
http://hdl.handle.net/10754/597950
Title:
Designing block copolymer architectures for targeted membrane performance
Authors:
Dorin, Rachel Mika; Phillip, William A.; Sai, Hiroaki; Werner, Jörg; Elimelech, Menachem; Wiesner, Ulrich
Abstract:
Using a combination of block copolymer self-assembly and non-solvent induced phase separation, isoporous ultrafiltration membranes were fabricated from four poly(isoprene-b-styrene-b-4-vinylpyridine) triblock terpolymers with similar block volume fractions but varying in total molar mass from 43 kg/mol to 115 kg/mol to systematically study the effect of polymer size on membrane structure. Small-angle X-ray scattering was used to probe terpolymer solution structure in the dope. All four triblocks displayed solution scattering patterns consistent with a body-centered cubic morphology. After membrane formation, structures were characterized using a combination of scanning electron microscopy and filtration performance tests. Membrane pore densities that ranged from 4.53 × 1014 to 1.48 × 1015 pores/m 2 were observed, which are the highest pore densities yet reported for membranes using self-assembly and non-solvent induced phase separation. Hydraulic permeabilities ranging from 24 to 850 L m-2 h-1 bar-1 and pore diameters ranging from 7 to 36 nm were determined from permeation and rejection experiments. Both the hydraulic permeability and pore size increased with increasing molar mass of the parent terpolymer. The combination of polymer characterization and membrane transport tests described here demonstrates the ability to rationally design macromolecular structures to target specific performance characteristics in block copolymer derived ultrafiltration membranes. © 2013 Elsevier Ltd. All rights reserved.
Citation:
Dorin RM, Phillip WA, Sai H, Werner J, Elimelech M, et al. (2014) Designing block copolymer architectures for targeted membrane performance. Polymer 55: 347–353. Available: http://dx.doi.org/10.1016/j.polymer.2013.09.038.
Publisher:
Elsevier BV
Journal:
Polymer
KAUST Grant Number:
KUS-C1-018-02
Issue Date:
Jan-2014
DOI:
10.1016/j.polymer.2013.09.038
Type:
Article
ISSN:
0032-3861
Sponsors:
This publication is based on work supported by award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). R.M.D. acknowledges support from the NSF Graduate Research Fellowship Program (GRFP). H.S. acknowledges funding by the NSF single investigator award (DMR-1104773). This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1120296) and the Cornell High Energy Synchrotron Source (CHESS), which is supported by the NSF 82 NIH/NIGMS via NSF award DMR-0936384, and MacCHESS supported by NIGMS award GM-103485. We thank Prof. E.M.V. Hoek and M. Pendergast for helpful discussions, and J. Weidman for SEM cross-sectional analysis of the ISV43 membrane.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorDorin, Rachel Mikaen
dc.contributor.authorPhillip, William A.en
dc.contributor.authorSai, Hiroakien
dc.contributor.authorWerner, Jörgen
dc.contributor.authorElimelech, Menachemen
dc.contributor.authorWiesner, Ulrichen
dc.date.accessioned2016-02-25T12:59:24Zen
dc.date.available2016-02-25T12:59:24Zen
dc.date.issued2014-01en
dc.identifier.citationDorin RM, Phillip WA, Sai H, Werner J, Elimelech M, et al. (2014) Designing block copolymer architectures for targeted membrane performance. Polymer 55: 347–353. Available: http://dx.doi.org/10.1016/j.polymer.2013.09.038.en
dc.identifier.issn0032-3861en
dc.identifier.doi10.1016/j.polymer.2013.09.038en
dc.identifier.urihttp://hdl.handle.net/10754/597950en
dc.description.abstractUsing a combination of block copolymer self-assembly and non-solvent induced phase separation, isoporous ultrafiltration membranes were fabricated from four poly(isoprene-b-styrene-b-4-vinylpyridine) triblock terpolymers with similar block volume fractions but varying in total molar mass from 43 kg/mol to 115 kg/mol to systematically study the effect of polymer size on membrane structure. Small-angle X-ray scattering was used to probe terpolymer solution structure in the dope. All four triblocks displayed solution scattering patterns consistent with a body-centered cubic morphology. After membrane formation, structures were characterized using a combination of scanning electron microscopy and filtration performance tests. Membrane pore densities that ranged from 4.53 × 1014 to 1.48 × 1015 pores/m 2 were observed, which are the highest pore densities yet reported for membranes using self-assembly and non-solvent induced phase separation. Hydraulic permeabilities ranging from 24 to 850 L m-2 h-1 bar-1 and pore diameters ranging from 7 to 36 nm were determined from permeation and rejection experiments. Both the hydraulic permeability and pore size increased with increasing molar mass of the parent terpolymer. The combination of polymer characterization and membrane transport tests described here demonstrates the ability to rationally design macromolecular structures to target specific performance characteristics in block copolymer derived ultrafiltration membranes. © 2013 Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipThis publication is based on work supported by award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). R.M.D. acknowledges support from the NSF Graduate Research Fellowship Program (GRFP). H.S. acknowledges funding by the NSF single investigator award (DMR-1104773). This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1120296) and the Cornell High Energy Synchrotron Source (CHESS), which is supported by the NSF 82 NIH/NIGMS via NSF award DMR-0936384, and MacCHESS supported by NIGMS award GM-103485. We thank Prof. E.M.V. Hoek and M. Pendergast for helpful discussions, and J. Weidman for SEM cross-sectional analysis of the ISV43 membrane.en
dc.publisherElsevier BVen
dc.subjectSelf-assemblyen
dc.subjectTriblock terpolymeren
dc.subjectUltrafiltration membraneen
dc.titleDesigning block copolymer architectures for targeted membrane performanceen
dc.typeArticleen
dc.identifier.journalPolymeren
dc.contributor.institutionCornell University, Ithaca, United Statesen
dc.contributor.institutionUniversity of Notre Dame, Notre Dame, United Statesen
dc.contributor.institutionYale University, New Haven, United Statesen
kaust.grant.numberKUS-C1-018-02en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.