Design of a rotary reactor for chemical-looping combustion. Part 1: Fundamentals and design methodology

Handle URI:
http://hdl.handle.net/10754/597942
Title:
Design of a rotary reactor for chemical-looping combustion. Part 1: Fundamentals and design methodology
Authors:
Zhao, Zhenlong; Iloeje, Chukwunwike O.; Chen, Tianjiao; Ghoniem, Ahmed F.
Abstract:
Chemical-looping combustion (CLC) is a novel and promising option for several applications including carbon capture (CC), fuel reforming, H 2 generation, etc. Previous studies demonstrated the feasibility of performing CLC in a novel rotary design with micro-channel structures. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet, and depleted air and product streams at exit. The rotary wheel consists of a large number of micro-channels with oxygen carriers (OC) coated on the inner surface of the channel walls. In the CC application, the OC oxidizes the fuel while the channel is in the fuel zone to generate undiluted CO2, and is regenerated while the channel is in the air zone. In this two-part series, the effect of the reactor design parameters is evaluated and its performance with different OCs is compared. In Part 1, the design objectives and criteria are specified and the key parameters controlling the reactor performance are identified. The fundamental effects of the OC characteristics, the design parameters, and the operating conditions are studied. The design procedures are presented on the basis of the relative importance of each parameter, enabling a systematic methodology of selecting the design parameters and the operating conditions with different OCs. Part 2 presents the application of the methodology to the designs with the three commonly used OCs, i.e., nickel, copper, and iron, and compares the simulated performances of the designs. © 2013 Elsevier Ltd. All rights reserved.
Citation:
Zhao Z, Iloeje CO, Chen T, Ghoniem AF (2014) Design of a rotary reactor for chemical-looping combustion. Part 1: Fundamentals and design methodology. Fuel 121: 327–343. Available: http://dx.doi.org/10.1016/j.fuel.2013.11.056.
Publisher:
Elsevier BV
Journal:
Fuel
Issue Date:
Apr-2014
DOI:
10.1016/j.fuel.2013.11.056
Type:
Article
ISSN:
0016-2361
Sponsors:
This study is financially supported by a grant from the MASDAR Institute of Science and Technology and the King Abdullah University of Science and Technology (KAUST) Investigator Award.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorZhao, Zhenlongen
dc.contributor.authorIloeje, Chukwunwike O.en
dc.contributor.authorChen, Tianjiaoen
dc.contributor.authorGhoniem, Ahmed F.en
dc.date.accessioned2016-02-25T12:59:17Zen
dc.date.available2016-02-25T12:59:17Zen
dc.date.issued2014-04en
dc.identifier.citationZhao Z, Iloeje CO, Chen T, Ghoniem AF (2014) Design of a rotary reactor for chemical-looping combustion. Part 1: Fundamentals and design methodology. Fuel 121: 327–343. Available: http://dx.doi.org/10.1016/j.fuel.2013.11.056.en
dc.identifier.issn0016-2361en
dc.identifier.doi10.1016/j.fuel.2013.11.056en
dc.identifier.urihttp://hdl.handle.net/10754/597942en
dc.description.abstractChemical-looping combustion (CLC) is a novel and promising option for several applications including carbon capture (CC), fuel reforming, H 2 generation, etc. Previous studies demonstrated the feasibility of performing CLC in a novel rotary design with micro-channel structures. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet, and depleted air and product streams at exit. The rotary wheel consists of a large number of micro-channels with oxygen carriers (OC) coated on the inner surface of the channel walls. In the CC application, the OC oxidizes the fuel while the channel is in the fuel zone to generate undiluted CO2, and is regenerated while the channel is in the air zone. In this two-part series, the effect of the reactor design parameters is evaluated and its performance with different OCs is compared. In Part 1, the design objectives and criteria are specified and the key parameters controlling the reactor performance are identified. The fundamental effects of the OC characteristics, the design parameters, and the operating conditions are studied. The design procedures are presented on the basis of the relative importance of each parameter, enabling a systematic methodology of selecting the design parameters and the operating conditions with different OCs. Part 2 presents the application of the methodology to the designs with the three commonly used OCs, i.e., nickel, copper, and iron, and compares the simulated performances of the designs. © 2013 Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipThis study is financially supported by a grant from the MASDAR Institute of Science and Technology and the King Abdullah University of Science and Technology (KAUST) Investigator Award.en
dc.publisherElsevier BVen
dc.subjectChemical-looping combustionen
dc.subjectCO2 captureen
dc.subjectOxygen carriersen
dc.subjectReaction kineticsen
dc.subjectRotary reactoren
dc.titleDesign of a rotary reactor for chemical-looping combustion. Part 1: Fundamentals and design methodologyen
dc.typeArticleen
dc.identifier.journalFuelen
dc.contributor.institutionMassachusetts Institute of Technology, Cambridge, United Statesen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.