An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid

Handle URI:
http://hdl.handle.net/10754/597510
Title:
An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid
Authors:
Bazhlekova, Emilia; Jin, Bangti; Lazarov, Raytcho; Zhou, Zhi
Abstract:
© 2014, The Author(s). We study the Rayleigh–Stokes problem for a generalized second-grade fluid which involves a Riemann–Liouville fractional derivative in time, and present an analysis of the problem in the continuous, space semidiscrete and fully discrete formulations. We establish the Sobolev regularity of the homogeneous problem for both smooth and nonsmooth initial data v, including v∈<sup>L2</sup>(Ω). A space semidiscrete Galerkin scheme using continuous piecewise linear finite elements is developed, and optimal with respect to initial data regularity error estimates for the finite element approximations are derived. Further, two fully discrete schemes based on the backward Euler method and second-order backward difference method and the related convolution quadrature are developed, and optimal error estimates are derived for the fully discrete approximations for both smooth and nonsmooth initial data. Numerical results for one- and two-dimensional examples with smooth and nonsmooth initial data are presented to illustrate the efficiency of the method, and to verify the convergence theory.
Citation:
Bazhlekova E, Jin B, Lazarov R, Zhou Z (2014) An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numerische Mathematik 131: 1–31. Available: http://dx.doi.org/10.1007/s00211-014-0685-2.
Publisher:
Springer Science + Business Media
Journal:
Numerische Mathematik
KAUST Grant Number:
KUS-C1-016-04
Issue Date:
26-Nov-2014
DOI:
10.1007/s00211-014-0685-2
Type:
Article
ISSN:
0029-599X; 0945-3245
Sponsors:
The authors are grateful to Prof. Christian Lubich for his helpful comments on an earlier version of the paper, which led to a significant improvement of the presentation in Sect. 4, and an anonymous referee for many constructive comments. The research of B. Jin has been supported by NSF Grant DMS-1319052, and R. Lazarov was supported in parts by NSF Grant DMS-1016525 and also by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorBazhlekova, Emiliaen
dc.contributor.authorJin, Bangtien
dc.contributor.authorLazarov, Raytchoen
dc.contributor.authorZhou, Zhien
dc.date.accessioned2016-02-25T12:41:09Zen
dc.date.available2016-02-25T12:41:09Zen
dc.date.issued2014-11-26en
dc.identifier.citationBazhlekova E, Jin B, Lazarov R, Zhou Z (2014) An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numerische Mathematik 131: 1–31. Available: http://dx.doi.org/10.1007/s00211-014-0685-2.en
dc.identifier.issn0029-599Xen
dc.identifier.issn0945-3245en
dc.identifier.doi10.1007/s00211-014-0685-2en
dc.identifier.urihttp://hdl.handle.net/10754/597510en
dc.description.abstract© 2014, The Author(s). We study the Rayleigh–Stokes problem for a generalized second-grade fluid which involves a Riemann–Liouville fractional derivative in time, and present an analysis of the problem in the continuous, space semidiscrete and fully discrete formulations. We establish the Sobolev regularity of the homogeneous problem for both smooth and nonsmooth initial data v, including v∈<sup>L2</sup>(Ω). A space semidiscrete Galerkin scheme using continuous piecewise linear finite elements is developed, and optimal with respect to initial data regularity error estimates for the finite element approximations are derived. Further, two fully discrete schemes based on the backward Euler method and second-order backward difference method and the related convolution quadrature are developed, and optimal error estimates are derived for the fully discrete approximations for both smooth and nonsmooth initial data. Numerical results for one- and two-dimensional examples with smooth and nonsmooth initial data are presented to illustrate the efficiency of the method, and to verify the convergence theory.en
dc.description.sponsorshipThe authors are grateful to Prof. Christian Lubich for his helpful comments on an earlier version of the paper, which led to a significant improvement of the presentation in Sect. 4, and an anonymous referee for many constructive comments. The research of B. Jin has been supported by NSF Grant DMS-1319052, and R. Lazarov was supported in parts by NSF Grant DMS-1016525 and also by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).en
dc.publisherSpringer Science + Business Mediaen
dc.subject65M15en
dc.subject65M60en
dc.titleAn analysis of the Rayleigh–Stokes problem for a generalized second-grade fluiden
dc.typeArticleen
dc.identifier.journalNumerische Mathematiken
dc.contributor.institutionInstitute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia, Bulgariaen
dc.contributor.institutionUCL, London, United Kingdomen
dc.contributor.institutionTexas A and M University, College Station, United Statesen
kaust.grant.numberKUS-C1-016-04en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.