Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture

Handle URI:
http://hdl.handle.net/10754/597500
Title:
Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture
Authors:
Li, Fuyue Stephanie; Lively, Ryan P.; Lee, Jong Suk; Koros, William J.
Abstract:
Increasing carbon dioxide emissions are generally believed to contribute to global warming. Developing new materials for capturing CO2 emitted from coal-fired plants can potentially mitigate the effect of these CO 2 emissions. In this study, we developed and optimized porous hollow fiber sorbents with both improved sorption capacities and rapid sorption kinetics by functionalizing aminosilane (N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane) to cellulose acetate hollow fibers as a "proof of concept". A lumen-side barrier layer was also developed in the aminosilane-functionalized cellulose acetate fiber sorbent to allow for facile heat exchange without significant mass transfer with the bore-side heat transfer fluid. The functionalized cellulose acetate fiber sorbents were characterized by pressure decay sorption measurements, multicomponent column chromatography, FT-IR, elemental analysis, and scanning electron microscopy. The carbon dioxide sorption capacity at 1 atm is 0.73 mmol/g by using the pressure decay apparatus. Multicomponent column chromatography measurements showed that aminosilane functionalized cellulose acetate fiber sorbent has a CO2 sorption capacity of 0.23 mmol/g at CO2 partial pressure 0.1 atm and 35 C in simulated flue gas. While this capacity is low, our proof of concept positions the technology to move forward to higher capacity with work that is underway. The presence of silicon and nitrogen elements in the elemental analysis confirmed the success of grafting along with FT-IR spectra which showed the absorbance peak (∼810 cm-1) for Si-C stretching. A cross-linked Neoprene material was used to form the lumen-side barrier layer. Preliminary data showed the required reduction in gas permeance to eliminate mixing between shell side and bore side fluid flows. Specifically the permeance was reduced from 10 000 GPUs for the neat fibers to 6.6 ± 0.1 and 3.3 ± 0.3 GPUs for the coated fibers. The selected lumen layer formation materials demonstrated strong resistance to water and oxygen. © 2013 American Chemical Society.
Citation:
Li FS, Lively RP, Lee JS, Koros WJ (2013) Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture . Ind Eng Chem Res 52: 8928–8935. Available: http://dx.doi.org/10.1021/ie3029224.
Publisher:
American Chemical Society (ACS)
Journal:
Industrial & Engineering Chemistry Research
Issue Date:
3-Jul-2013
DOI:
10.1021/ie3029224
Type:
Article
ISSN:
0888-5885; 1520-5045
Sponsors:
The authors acknowledge the support from King Abdullah University of Science and Technology (KAUST) for funding this research project. We also thank Tiarco Chemical for their cross-linking agents supply and DuPont Elastomers for their Neoprene supply.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorLi, Fuyue Stephanieen
dc.contributor.authorLively, Ryan P.en
dc.contributor.authorLee, Jong Suken
dc.contributor.authorKoros, William J.en
dc.date.accessioned2016-02-25T12:40:57Zen
dc.date.available2016-02-25T12:40:57Zen
dc.date.issued2013-07-03en
dc.identifier.citationLi FS, Lively RP, Lee JS, Koros WJ (2013) Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture . Ind Eng Chem Res 52: 8928–8935. Available: http://dx.doi.org/10.1021/ie3029224.en
dc.identifier.issn0888-5885en
dc.identifier.issn1520-5045en
dc.identifier.doi10.1021/ie3029224en
dc.identifier.urihttp://hdl.handle.net/10754/597500en
dc.description.abstractIncreasing carbon dioxide emissions are generally believed to contribute to global warming. Developing new materials for capturing CO2 emitted from coal-fired plants can potentially mitigate the effect of these CO 2 emissions. In this study, we developed and optimized porous hollow fiber sorbents with both improved sorption capacities and rapid sorption kinetics by functionalizing aminosilane (N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane) to cellulose acetate hollow fibers as a "proof of concept". A lumen-side barrier layer was also developed in the aminosilane-functionalized cellulose acetate fiber sorbent to allow for facile heat exchange without significant mass transfer with the bore-side heat transfer fluid. The functionalized cellulose acetate fiber sorbents were characterized by pressure decay sorption measurements, multicomponent column chromatography, FT-IR, elemental analysis, and scanning electron microscopy. The carbon dioxide sorption capacity at 1 atm is 0.73 mmol/g by using the pressure decay apparatus. Multicomponent column chromatography measurements showed that aminosilane functionalized cellulose acetate fiber sorbent has a CO2 sorption capacity of 0.23 mmol/g at CO2 partial pressure 0.1 atm and 35 C in simulated flue gas. While this capacity is low, our proof of concept positions the technology to move forward to higher capacity with work that is underway. The presence of silicon and nitrogen elements in the elemental analysis confirmed the success of grafting along with FT-IR spectra which showed the absorbance peak (∼810 cm-1) for Si-C stretching. A cross-linked Neoprene material was used to form the lumen-side barrier layer. Preliminary data showed the required reduction in gas permeance to eliminate mixing between shell side and bore side fluid flows. Specifically the permeance was reduced from 10 000 GPUs for the neat fibers to 6.6 ± 0.1 and 3.3 ± 0.3 GPUs for the coated fibers. The selected lumen layer formation materials demonstrated strong resistance to water and oxygen. © 2013 American Chemical Society.en
dc.description.sponsorshipThe authors acknowledge the support from King Abdullah University of Science and Technology (KAUST) for funding this research project. We also thank Tiarco Chemical for their cross-linking agents supply and DuPont Elastomers for their Neoprene supply.en
dc.publisherAmerican Chemical Society (ACS)en
dc.titleAminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Captureen
dc.typeArticleen
dc.identifier.journalIndustrial & Engineering Chemistry Researchen
dc.contributor.institutionGeorgia Institute of Technology, Atlanta, United Statesen
dc.contributor.institutionAlgenol Biofuels, , United Statesen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.