A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

Handle URI:
http://hdl.handle.net/10754/597384
Title:
A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment
Authors:
Ivanov, Ivan; Ren, Lijiao; Siegert, Michael; Logan, Bruce E.
Abstract:
Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment for different wastewaters requires new approaches to quantify performance, and the establishment of specific procedures and parameters to characterize the outcome of fed-batch treatability tests. It is shown here that Coulombic efficiency can be used to directly calculate energy consumption relative to wastewater treatment in terms of COD removal, and that the average current, not maximum current, is a better metric to evaluate the rate of the bioelectrochemical reactions. The utility of these methods was demonstrated using simulated current profiles and actual wastewater tests. Industrial and domestic wastewaters were evaluated using small volume MECs, and different inoculation strategies. The energy needed for treatment was 2.17kWhkgCOD-1 for industrial wastewater and 2.59kWhkgCOD-1 for domestic wastewater. When these wastewaters were combined in equal amounts, the energy required was reduced to 0.63kWhkgCOD-1. Acclimation of the MEC to domestic wastewater, prior to tests with industrial wastewaters, was the easiest and most direct method to optimize MEC performance for industrial wastewater treatment. A pre-acclimated MEC accomplished the same removal (1847 ± 53 mg L-1) as reactor acclimated to only the industrial wastewater (1839 ± 57 mg L-1), but treatment was achieved in significantly less time (70 h versus 238 h). © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Citation:
Ivanov I, Ren L, Siegert M, Logan BE (2013) A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment. International Journal of Hydrogen Energy 38: 13135–13142. Available: http://dx.doi.org/10.1016/j.ijhydene.2013.07.123.
Publisher:
Elsevier BV
Journal:
International Journal of Hydrogen Energy
KAUST Grant Number:
KUS-I1-003-13
Issue Date:
Oct-2013
DOI:
10.1016/j.ijhydene.2013.07.123
Type:
Article
ISSN:
0360-3199
Sponsors:
The authors would like to thank Air Products and Chemicals, Inc. (APCI) for providing the industrial wastewater samples. This research has been supported by APCI and Award KUS-I1-003-13 from the King Abdullah University of Science and Technology (KAUST).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorIvanov, Ivanen
dc.contributor.authorRen, Lijiaoen
dc.contributor.authorSiegert, Michaelen
dc.contributor.authorLogan, Bruce E.en
dc.date.accessioned2016-02-25T12:32:06Zen
dc.date.available2016-02-25T12:32:06Zen
dc.date.issued2013-10en
dc.identifier.citationIvanov I, Ren L, Siegert M, Logan BE (2013) A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment. International Journal of Hydrogen Energy 38: 13135–13142. Available: http://dx.doi.org/10.1016/j.ijhydene.2013.07.123.en
dc.identifier.issn0360-3199en
dc.identifier.doi10.1016/j.ijhydene.2013.07.123en
dc.identifier.urihttp://hdl.handle.net/10754/597384en
dc.description.abstractMicrobial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment for different wastewaters requires new approaches to quantify performance, and the establishment of specific procedures and parameters to characterize the outcome of fed-batch treatability tests. It is shown here that Coulombic efficiency can be used to directly calculate energy consumption relative to wastewater treatment in terms of COD removal, and that the average current, not maximum current, is a better metric to evaluate the rate of the bioelectrochemical reactions. The utility of these methods was demonstrated using simulated current profiles and actual wastewater tests. Industrial and domestic wastewaters were evaluated using small volume MECs, and different inoculation strategies. The energy needed for treatment was 2.17kWhkgCOD-1 for industrial wastewater and 2.59kWhkgCOD-1 for domestic wastewater. When these wastewaters were combined in equal amounts, the energy required was reduced to 0.63kWhkgCOD-1. Acclimation of the MEC to domestic wastewater, prior to tests with industrial wastewaters, was the easiest and most direct method to optimize MEC performance for industrial wastewater treatment. A pre-acclimated MEC accomplished the same removal (1847 ± 53 mg L-1) as reactor acclimated to only the industrial wastewater (1839 ± 57 mg L-1), but treatment was achieved in significantly less time (70 h versus 238 h). © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipThe authors would like to thank Air Products and Chemicals, Inc. (APCI) for providing the industrial wastewater samples. This research has been supported by APCI and Award KUS-I1-003-13 from the King Abdullah University of Science and Technology (KAUST).en
dc.publisherElsevier BVen
dc.subjectMicrobial electrolysis cell Wastewater treatment Energy consumption Coulombic efficiencyen
dc.titleA quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatmenten
dc.typeArticleen
dc.identifier.journalInternational Journal of Hydrogen Energyen
dc.contributor.institutionPennsylvania State University, State College, United Statesen
kaust.grant.numberKUS-I1-003-13en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.