A novel approach for the fabrication of carbon nanofibre/ceramic porous structures

Handle URI:
http://hdl.handle.net/10754/597357
Title:
A novel approach for the fabrication of carbon nanofibre/ceramic porous structures
Authors:
Walter, Claudia; Barg, Suelen; Ni, Na; Maher, Robert C.; Garcίa-Tuñón, Esther; Zaiviji Ismail, Muhammad Muzzafar; Babot, Flora; Saiz, Eduardo
Abstract:
This paper describes the fabrication of hybrid ceramic/carbon scaffolds in which carbon nanofibres and multi-walled carbon nanotubes fully cover the internal walls of a microporous ceramic structure that provides mechanical stability. Freeze casting is used to fabricate a porous, lamellar ceramic (Al2O3) structure with aligned pores whose width can be controlled between 10 and 90μm. Subsequently, a two step chemical vapour deposition process that uses iron as a catalyst is used to grow the carbon nanostructures inside the scaffold. This catalyst remains in the scaffold after the growth process. The formation of the alumina scaffold and the influence of its structure on the growth of nanofibres and tubes are investigated. A set of growth conditions is determined to produce a dense covering of the internal walls of the porous ceramic with the carbon nanostructures. The limiting pore size for this process is located around 25μm. © 2013 Elsevier Ltd.
Citation:
Walter C, Barg S, Ni N, Maher RC, Garcίa-Tuñón E, et al. (2013) A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society 33: 2365–2374. Available: http://dx.doi.org/10.1016/j.jeurceramsoc.2013.04.024.
Publisher:
Elsevier BV
Journal:
Journal of the European Ceramic Society
KAUST Grant Number:
KUK-F1-020-21
Issue Date:
Nov-2013
DOI:
10.1016/j.jeurceramsoc.2013.04.024
Type:
Article
ISSN:
0955-2219
Sponsors:
The authors would like to thank Gary Stakalls and Leroy Grey for technical assistance, a grant from the Army Engineer Research and Development Centre International Research Office (contract no: W911NF-10-1-0438), and EPSRC Science and Innovation Grant Building New Capability in Structural Ceramics (EP/F033605/1) for funding, and Dr. Charles R. Welch for comments on the manuscript. RCM is grateful for funding Award No KUK-F1-020-21, made by King Abdullah, University of Science and Technology (KAUST). SB and ES would like to thank the European Commission (FP7 programme) for the funding (Intra-European Marie Curie Fellowship ACIN and reintegration grant BISM). NN would like to thank the UK Engineering and Physical Sciences Research Council for the funding (EPSRC Doctoral Prize Fellowship).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorWalter, Claudiaen
dc.contributor.authorBarg, Suelenen
dc.contributor.authorNi, Naen
dc.contributor.authorMaher, Robert C.en
dc.contributor.authorGarcίa-Tuñón, Estheren
dc.contributor.authorZaiviji Ismail, Muhammad Muzzafaren
dc.contributor.authorBabot, Floraen
dc.contributor.authorSaiz, Eduardoen
dc.date.accessioned2016-02-25T12:31:28Zen
dc.date.available2016-02-25T12:31:28Zen
dc.date.issued2013-11en
dc.identifier.citationWalter C, Barg S, Ni N, Maher RC, Garcίa-Tuñón E, et al. (2013) A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society 33: 2365–2374. Available: http://dx.doi.org/10.1016/j.jeurceramsoc.2013.04.024.en
dc.identifier.issn0955-2219en
dc.identifier.doi10.1016/j.jeurceramsoc.2013.04.024en
dc.identifier.urihttp://hdl.handle.net/10754/597357en
dc.description.abstractThis paper describes the fabrication of hybrid ceramic/carbon scaffolds in which carbon nanofibres and multi-walled carbon nanotubes fully cover the internal walls of a microporous ceramic structure that provides mechanical stability. Freeze casting is used to fabricate a porous, lamellar ceramic (Al2O3) structure with aligned pores whose width can be controlled between 10 and 90μm. Subsequently, a two step chemical vapour deposition process that uses iron as a catalyst is used to grow the carbon nanostructures inside the scaffold. This catalyst remains in the scaffold after the growth process. The formation of the alumina scaffold and the influence of its structure on the growth of nanofibres and tubes are investigated. A set of growth conditions is determined to produce a dense covering of the internal walls of the porous ceramic with the carbon nanostructures. The limiting pore size for this process is located around 25μm. © 2013 Elsevier Ltd.en
dc.description.sponsorshipThe authors would like to thank Gary Stakalls and Leroy Grey for technical assistance, a grant from the Army Engineer Research and Development Centre International Research Office (contract no: W911NF-10-1-0438), and EPSRC Science and Innovation Grant Building New Capability in Structural Ceramics (EP/F033605/1) for funding, and Dr. Charles R. Welch for comments on the manuscript. RCM is grateful for funding Award No KUK-F1-020-21, made by King Abdullah, University of Science and Technology (KAUST). SB and ES would like to thank the European Commission (FP7 programme) for the funding (Intra-European Marie Curie Fellowship ACIN and reintegration grant BISM). NN would like to thank the UK Engineering and Physical Sciences Research Council for the funding (EPSRC Doctoral Prize Fellowship).en
dc.publisherElsevier BVen
dc.subjectCarbon nanotubesen
dc.subjectCeramicsen
dc.subjectCVDen
dc.subjectFreeze castingen
dc.subjectScaffolden
dc.titleA novel approach for the fabrication of carbon nanofibre/ceramic porous structuresen
dc.typeArticleen
dc.identifier.journalJournal of the European Ceramic Societyen
dc.contributor.institutionImperial College London, London, United Kingdomen
kaust.grant.numberKUK-F1-020-21en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.