A low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems

Handle URI:
http://hdl.handle.net/10754/597297
Title:
A low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems
Authors:
Carlberg, Kevin; Farhat, Charbel
Abstract:
A novel model reduction technique for static systems is presented. The method is developed using a goal-oriented framework, and it extends the concept of snapshots for proper orthogonal decomposition (POD) to include (sensitivity) derivatives of the state with respect to system input parameters. The resulting reduced-order model generates accurate approximations due to its goal-oriented construction and the explicit 'training' of the model for parameter changes. The model is less computationally expensive to construct than typical POD approaches, since efficient multiple right-hand side solvers can be used to compute the sensitivity derivatives. The effectiveness of the method is demonstrated on a parameterized aerospace structure problem. © 2010 John Wiley & Sons, Ltd.
Citation:
Carlberg K, Farhat C (2010) A low-cost, goal-oriented “compact proper orthogonal decomposition” basis for model reduction of static systems. Int J Numer Meth Engng 86: 381–402. Available: http://dx.doi.org/10.1002/nme.3074.
Publisher:
Wiley-Blackwell
Journal:
International Journal for Numerical Methods in Engineering
Issue Date:
10-Dec-2010
DOI:
10.1002/nme.3074
Type:
Article
ISSN:
0029-5981
Sponsors:
The first author acknowledges the partial support by a National Science Foundation Graduate Fellowship, and the partial support by a National Defense Science and Engineering Graduate Fellowship. The second author acknowledges the partial support by a research grant from the Academic Excellence Alliance program between King Abdullah University of Science and Technology (KAUST) and Stanford University. Both authors also acknowledge the partial support by the Motor Sports Division of the Toyota Motor Corporation under Agreement Number 48737. They thank Prof. Kurt Maute and his research group at the University of Colorado for providing the SDESIGN tool for managing shape parameters in their research, and Julien Cortial and David Amsallem at Stanford University for assisting in this research effort. This work received support from National Science Foundation (0540419).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorCarlberg, Kevinen
dc.contributor.authorFarhat, Charbelen
dc.date.accessioned2016-02-25T12:30:06Zen
dc.date.available2016-02-25T12:30:06Zen
dc.date.issued2010-12-10en
dc.identifier.citationCarlberg K, Farhat C (2010) A low-cost, goal-oriented “compact proper orthogonal decomposition” basis for model reduction of static systems. Int J Numer Meth Engng 86: 381–402. Available: http://dx.doi.org/10.1002/nme.3074.en
dc.identifier.issn0029-5981en
dc.identifier.doi10.1002/nme.3074en
dc.identifier.urihttp://hdl.handle.net/10754/597297en
dc.description.abstractA novel model reduction technique for static systems is presented. The method is developed using a goal-oriented framework, and it extends the concept of snapshots for proper orthogonal decomposition (POD) to include (sensitivity) derivatives of the state with respect to system input parameters. The resulting reduced-order model generates accurate approximations due to its goal-oriented construction and the explicit 'training' of the model for parameter changes. The model is less computationally expensive to construct than typical POD approaches, since efficient multiple right-hand side solvers can be used to compute the sensitivity derivatives. The effectiveness of the method is demonstrated on a parameterized aerospace structure problem. © 2010 John Wiley & Sons, Ltd.en
dc.description.sponsorshipThe first author acknowledges the partial support by a National Science Foundation Graduate Fellowship, and the partial support by a National Defense Science and Engineering Graduate Fellowship. The second author acknowledges the partial support by a research grant from the Academic Excellence Alliance program between King Abdullah University of Science and Technology (KAUST) and Stanford University. Both authors also acknowledge the partial support by the Motor Sports Division of the Toyota Motor Corporation under Agreement Number 48737. They thank Prof. Kurt Maute and his research group at the University of Colorado for providing the SDESIGN tool for managing shape parameters in their research, and Julien Cortial and David Amsallem at Stanford University for assisting in this research effort. This work received support from National Science Foundation (0540419).en
dc.publisherWiley-Blackwellen
dc.subjectGoal-orienteden
dc.subjectModel reductionen
dc.subjectProper orthogonal decompositionen
dc.subjectSensitivity analysisen
dc.subjectStatic systemsen
dc.titleA low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systemsen
dc.typeArticleen
dc.identifier.journalInternational Journal for Numerical Methods in Engineeringen
dc.contributor.institutionStanford University, Palo Alto, United Statesen
kaust.grant.programAcademic Excellence Alliance (AEA)en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.