Handle URI:
http://hdl.handle.net/10754/597247
Title:
A coupled chemotaxis-fluid model: Global existence
Authors:
Liu, Jian-Guo; Lorz, Alexander
Abstract:
We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.
Citation:
Liu J-G, Lorz A (2011) A coupled chemotaxis-fluid model: Global existence. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 28: 643–652. Available: http://dx.doi.org/10.1016/j.anihpc.2011.04.005.
Publisher:
Elsevier BV
Journal:
Annales de l'Institut Henri Poincare (C) Non Linear Analysis
KAUST Grant Number:
KUK-I1-007-43
Issue Date:
Sep-2011
DOI:
10.1016/j.anihpc.2011.04.005
Type:
Article
ISSN:
0294-1449
Sponsors:
This research is supported by Award No. KUK-I1-007-43, made by King Abdullah University of Science and Technology (KAUST). Jian-Guo Liu acknowledges support by NSF grant DMS-0811177.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorLiu, Jian-Guoen
dc.contributor.authorLorz, Alexanderen
dc.date.accessioned2016-02-25T12:28:53Zen
dc.date.available2016-02-25T12:28:53Zen
dc.date.issued2011-09en
dc.identifier.citationLiu J-G, Lorz A (2011) A coupled chemotaxis-fluid model: Global existence. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 28: 643–652. Available: http://dx.doi.org/10.1016/j.anihpc.2011.04.005.en
dc.identifier.issn0294-1449en
dc.identifier.doi10.1016/j.anihpc.2011.04.005en
dc.identifier.urihttp://hdl.handle.net/10754/597247en
dc.description.abstractWe consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.en
dc.description.sponsorshipThis research is supported by Award No. KUK-I1-007-43, made by King Abdullah University of Science and Technology (KAUST). Jian-Guo Liu acknowledges support by NSF grant DMS-0811177.en
dc.publisherElsevier BVen
dc.titleA coupled chemotaxis-fluid model: Global existenceen
dc.typeArticleen
dc.identifier.journalAnnales de l'Institut Henri Poincare (C) Non Linear Analysisen
dc.contributor.institutionDuke University, Durham, United Statesen
dc.contributor.institutionUniversity of Cambridge, Cambridge, United Kingdomen
kaust.grant.numberKUK-I1-007-43en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.