3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

Handle URI:
http://hdl.handle.net/10754/597215
Title:
3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth
Authors:
Perfahl, H.; Byrne, H. M.; Chen, T.; Estrella, V.; Alarcón, T.; Lapin, A.; Gatenby, R. A.; Gillies, R. J.; Lloyd, M. C.; Maini, P. K.; Reuss, M.; Owen, M. R.
Abstract:
We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.
Citation:
Perfahl H, Byrne HM, Chen T, Estrella V, Alarcón T, et al. (2012) 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth. Micro and Nano Flow Systems for Bioanalysis: 29–48. Available: http://dx.doi.org/10.1007/978-1-4614-4376-6_3.
Publisher:
Springer Science + Business Media
Journal:
Micro and Nano Flow Systems for Bioanalysis
KAUST Grant Number:
KUK-C1-1013-04
Issue Date:
1-Nov-2012
DOI:
10.1007/978-1-4614-4376-6_3
Type:
Book Chapter
Sponsors:
HMB, MRO and HP acknowledge financial support by the Marie CurieNetwork MMBNOTT (Project No. MEST-CT-2005-020723). RAG and PKM acknowledge partialsupport from NIH/NCI grant U54CA143970. HP, AL and MR thank the BMBF—FundingInitiative FORSYS Partner: “Predictive Cancer Therapy”. In vivo window chamber work wasfunded in part by Moffitt Cancer Center PS-OC NIH/NCI U54CA143970. This publication wasbased on work supported in part by Award No. KUK-C1-1013-04, made by King AbdullahUniversity of Science and Technology (KAUST).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorPerfahl, H.en
dc.contributor.authorByrne, H. M.en
dc.contributor.authorChen, T.en
dc.contributor.authorEstrella, V.en
dc.contributor.authorAlarcón, T.en
dc.contributor.authorLapin, A.en
dc.contributor.authorGatenby, R. A.en
dc.contributor.authorGillies, R. J.en
dc.contributor.authorLloyd, M. C.en
dc.contributor.authorMaini, P. K.en
dc.contributor.authorReuss, M.en
dc.contributor.authorOwen, M. R.en
dc.date.accessioned2016-02-25T12:28:07Zen
dc.date.available2016-02-25T12:28:07Zen
dc.date.issued2012-11-01en
dc.identifier.citationPerfahl H, Byrne HM, Chen T, Estrella V, Alarcón T, et al. (2012) 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth. Micro and Nano Flow Systems for Bioanalysis: 29–48. Available: http://dx.doi.org/10.1007/978-1-4614-4376-6_3.en
dc.identifier.doi10.1007/978-1-4614-4376-6_3en
dc.identifier.urihttp://hdl.handle.net/10754/597215en
dc.description.abstractWe present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.en
dc.description.sponsorshipHMB, MRO and HP acknowledge financial support by the Marie CurieNetwork MMBNOTT (Project No. MEST-CT-2005-020723). RAG and PKM acknowledge partialsupport from NIH/NCI grant U54CA143970. HP, AL and MR thank the BMBF—FundingInitiative FORSYS Partner: “Predictive Cancer Therapy”. In vivo window chamber work wasfunded in part by Moffitt Cancer Center PS-OC NIH/NCI U54CA143970. This publication wasbased on work supported in part by Award No. KUK-C1-1013-04, made by King AbdullahUniversity of Science and Technology (KAUST).en
dc.publisherSpringer Science + Business Mediaen
dc.title3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growthen
dc.typeBook Chapteren
dc.identifier.journalMicro and Nano Flow Systems for Bioanalysisen
dc.contributor.institutionCenter for Systems-Biology, University of Stuttgart, Stuttgart, Germanyen
dc.contributor.institutionOxford Centre for Collaborative Applied Mathematics, Department of Computer Science, University of Oxford, Oxford, UKen
dc.contributor.institutionH. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USAen
dc.contributor.institutionCentre de Recerca Matemàtica, Campus de Bellaterra, Barcelona, Spainen
dc.contributor.institutionCentre for Mathematical Biology, Mathematical Institute and Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, UKen
dc.contributor.institutionCentre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UKen
kaust.grant.numberKUK-C1-1013-04en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.