Numerical modelling of ion transport in flames

Handle URI:
http://hdl.handle.net/10754/594252
Title:
Numerical modelling of ion transport in flames
Authors:
Han, Jie ( 0000-0002-6176-8684 ) ; Belhi, Memdouh ( 0000-0003-4307-4950 ) ; Bisetti, Fabrizio ( 0000-0001-5162-7805 ) ; Sarathy, Mani ( 0000-0002-3975-6206 )
Abstract:
This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.
KAUST Department:
Clean Combustion Research Center
Citation:
Han J, Belhi M, Bisetti F, Mani Sarathy S (2015) Numerical modelling of ion transport in flames. Combustion Theory and Modelling 19: 744–772. Available: http://dx.doi.org/10.1080/13647830.2015.1090018.
Publisher:
Informa UK Limited
Journal:
Combustion Theory and Modelling
Issue Date:
20-Oct-2015
DOI:
10.1080/13647830.2015.1090018
Type:
Article
ISSN:
1364-7830; 1741-3559
Sponsors:
King Abdullah University of Science and Technology[Electromagnetically-enhanced combustion]
Appears in Collections:
Articles; Clean Combustion Research Center

Full metadata record

DC FieldValue Language
dc.contributor.authorHan, Jieen
dc.contributor.authorBelhi, Memdouhen
dc.contributor.authorBisetti, Fabrizioen
dc.contributor.authorSarathy, Manien
dc.date.accessioned2016-01-19T14:44:25Zen
dc.date.available2016-01-19T14:44:25Zen
dc.date.issued2015-10-20en
dc.identifier.citationHan J, Belhi M, Bisetti F, Mani Sarathy S (2015) Numerical modelling of ion transport in flames. Combustion Theory and Modelling 19: 744–772. Available: http://dx.doi.org/10.1080/13647830.2015.1090018.en
dc.identifier.issn1364-7830en
dc.identifier.issn1741-3559en
dc.identifier.doi10.1080/13647830.2015.1090018en
dc.identifier.urihttp://hdl.handle.net/10754/594252en
dc.description.abstractThis paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.en
dc.description.sponsorshipKing Abdullah University of Science and Technology[Electromagnetically-enhanced combustion]en
dc.publisherInforma UK Limiteden
dc.subjectcharged speciesen
dc.subjectcombustionen
dc.subjectdiffusivityen
dc.subjectmobilityen
dc.subjectpolarizabilityen
dc.titleNumerical modelling of ion transport in flamesen
dc.typeArticleen
dc.contributor.departmentClean Combustion Research Centeren
dc.identifier.journalCombustion Theory and Modellingen
kaust.authorHan, Jieen
kaust.authorBelhi, Memdouhen
kaust.authorBisetti, Fabrizioen
kaust.authorSarathy, Manien
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.