Gas permeation measurement under defined humidity via constant volume/variable pressure method

Handle URI:
http://hdl.handle.net/10754/594166
Title:
Gas permeation measurement under defined humidity via constant volume/variable pressure method
Authors:
Jan Roman, Pauls; Detlev, Fritsch; Thomas, Klassen; Peinemann, Klaus-Viktor ( 0000-0003-0309-9598 )
Abstract:
Many industrial gas separations in which membrane processes are feasible entail high water vapour contents, as in CO 2-separation from flue gas in carbon capture and storage (CCS), or in biogas/natural gas processing. Studying the effect of water vapour on gas permeability through polymeric membranes is essential for materials design and optimization of these membrane applications. In particular, for amine-based CO 2 selective facilitated transport membranes, water vapour is necessary for carrier-complex formation (Matsuyama et al., 1996; Deng and Hägg, 2010; Liu et al., 2008; Shishatskiy et al., 2010) [1-4]. But also conventional polymeric membrane materials can vary their permeation behaviour due to water-induced swelling (Potreck, 2009) [5]. Here we describe a simple approach to gas permeability measurement in the presence of water vapour, in the form of a modified constant volume/variable pressure method (pressure increase method). © 2011 Elsevier B.V.
KAUST Department:
Advanced Membranes and Porous Materials Research Center
Citation:
Jan Roman P, Detlev F, Thomas K, Klaus-Viktor P (2012) Gas permeation measurement under defined humidity via constant volume/variable pressure method. Journal of Membrane Science 389: 343–348. Available: http://dx.doi.org/10.1016/j.memsci.2011.10.046.
Publisher:
Elsevier BV
Journal:
Journal of Membrane Science
Issue Date:
Feb-2012
DOI:
10.1016/j.memsci.2011.10.046
Type:
Article
ISSN:
0376-7388
Appears in Collections:
Articles; Advanced Membranes and Porous Materials Research Center

Full metadata record

DC FieldValue Language
dc.contributor.authorJan Roman, Paulsen
dc.contributor.authorDetlev, Fritschen
dc.contributor.authorThomas, Klassenen
dc.contributor.authorPeinemann, Klaus-Viktoren
dc.date.accessioned2016-01-19T13:23:02Zen
dc.date.available2016-01-19T13:23:02Zen
dc.date.issued2012-02en
dc.identifier.citationJan Roman P, Detlev F, Thomas K, Klaus-Viktor P (2012) Gas permeation measurement under defined humidity via constant volume/variable pressure method. Journal of Membrane Science 389: 343–348. Available: http://dx.doi.org/10.1016/j.memsci.2011.10.046.en
dc.identifier.issn0376-7388en
dc.identifier.doi10.1016/j.memsci.2011.10.046en
dc.identifier.urihttp://hdl.handle.net/10754/594166en
dc.description.abstractMany industrial gas separations in which membrane processes are feasible entail high water vapour contents, as in CO 2-separation from flue gas in carbon capture and storage (CCS), or in biogas/natural gas processing. Studying the effect of water vapour on gas permeability through polymeric membranes is essential for materials design and optimization of these membrane applications. In particular, for amine-based CO 2 selective facilitated transport membranes, water vapour is necessary for carrier-complex formation (Matsuyama et al., 1996; Deng and Hägg, 2010; Liu et al., 2008; Shishatskiy et al., 2010) [1-4]. But also conventional polymeric membrane materials can vary their permeation behaviour due to water-induced swelling (Potreck, 2009) [5]. Here we describe a simple approach to gas permeability measurement in the presence of water vapour, in the form of a modified constant volume/variable pressure method (pressure increase method). © 2011 Elsevier B.V.en
dc.publisherElsevier BVen
dc.subjectConstant volume/variable pressure methoden
dc.subjectEffect of water vaporen
dc.subjectHumidityen
dc.subjectPebaxen
dc.subjectPEO containing block copolymersen
dc.subjectPermeability measurementen
dc.subjectPressure increase methoden
dc.titleGas permeation measurement under defined humidity via constant volume/variable pressure methoden
dc.typeArticleen
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Centeren
dc.identifier.journalJournal of Membrane Scienceen
dc.contributor.institutionInstitute of Materials Research, Helmholtz-Zentrums Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germanyen
dc.contributor.institutionInstitute of Materials Technology, Helmut-Schmidt-University, University of the Federal Armed Forces, Holstenhofweg 85, 22043 Hamburg, Germanyen
dc.contributor.institutionFraunhofer-Institut für Angewandte Polymerforschung, Geiselbergstrasse 69, 14476 Potsdam-Golm, Germanyen
kaust.authorPeinemann, Klaus-Viktoren
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.