Adaptive distributed parameter and input estimation in linear parabolic PDEs

Handle URI:
http://hdl.handle.net/10754/593664
Title:
Adaptive distributed parameter and input estimation in linear parabolic PDEs
Authors:
Mechhoud, Sarra ( 0000-0002-9362-1046 )
Abstract:
In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Citation:
Adaptive distributed parameter and input estimation in linear parabolic PDEs 2016:n/a International Journal of Adaptive Control and Signal Processing
Publisher:
Wiley-Blackwell
Journal:
International Journal of Adaptive Control and Signal Processing
Issue Date:
Jan-2016
DOI:
10.1002/acs.2668
Type:
Article
ISSN:
08906327
Additional Links:
http://doi.wiley.com/10.1002/acs.2668
Appears in Collections:
Articles; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorMechhoud, Sarraen
dc.date.accessioned2016-01-18T08:03:19Zen
dc.date.available2016-01-18T08:03:19Zen
dc.date.issued2016-01en
dc.identifier.citationAdaptive distributed parameter and input estimation in linear parabolic PDEs 2016:n/a International Journal of Adaptive Control and Signal Processingen
dc.identifier.issn08906327en
dc.identifier.doi10.1002/acs.2668en
dc.identifier.urihttp://hdl.handle.net/10754/593664en
dc.description.abstractIn this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.en
dc.language.isoenen
dc.publisherWiley-Blackwellen
dc.relation.urlhttp://doi.wiley.com/10.1002/acs.2668en
dc.rightsArchived with thanks to International Journal of Adaptive Control and Signal Processingen
dc.subjectDistributed parameter systemsen
dc.subjectAdaptive estimationen
dc.subjectinterior- point measurementsen
dc.subjectInput estimationen
dc.subjectState and parameter estimationen
dc.subjectIdentifiability conditionsen
dc.titleAdaptive distributed parameter and input estimation in linear parabolic PDEsen
dc.typeArticleen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.identifier.journalInternational Journal of Adaptive Control and Signal Processingen
dc.eprint.versionPost-printen
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)en
kaust.authorMechhoud, Sarraen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.