A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO 2 capture and hydrocarbon separation

Handle URI:
http://hdl.handle.net/10754/579558
Title:
A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO 2 capture and hydrocarbon separation
Authors:
Chen, Zhijie; Adil, Karim ( 0000-0002-3804-1065 ) ; Weselinski, Lukasz Jan ( 0000-0003-4516-2727 ) ; Belmabkhout, Youssef ( 0000-0001-9952-5007 ) ; Eddaoudi, Mohamed ( 0000-0003-1916-9837 )
Abstract:
The supermolecular building layer (SBL) approach was employed to deliberately synthesize five novel metal–organic frameworks (1–5) with an exposed array of amide or amine functionalities within their pore system. The ability to decorate the pores with nitrogen donor moieties offers potential to evaluate/elucidate the structure–adsorption property relationship. Two MOF platforms, eea-MOF and rtl-MOF, based on pillaring of kgm-a or sql-a layers with heterofunctional 3-connected organic building blocks were targeted and constructed to purposely introduce and expose the desired amide or amine functionalities. Interestingly, gas adsorption properties of eea-MOF-4 (1) and eea-MOF-5 (2) showed that by simply altering the nitrogen donor position within the ligand, it is possible to relatively reduce the pore size of the related eea-MOF material and subsequently increase the associated CO2 uptake. The slightly confined pore space in 2, relative to 1, has enabled an enhancement of the pore local charge density and thus the observed relative increase in the CO2 and H2 isosteric heat of adsorption (Qst). In addition, light hydrocarbon adsorption studies revealed that 2 is more selective toward C2H6 and C3H8 over CH4 than 1, as exemplified for C2H6 : CH4 (5 : 95) or C3H8 : CH4 (5 : 95) binary gas mixtures.
KAUST Department:
Functional Materials Design, Discovery and Development (FMD3); Advanced Membranes and Porous Materials Research Center; Physical Sciences and Engineering (PSE) Division
Citation:
A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO 2 capture and hydrocarbon separation 2015, 3 (12):6276 J. Mater. Chem. A
Publisher:
Royal Society of Chemistry (RSC)
Journal:
J. Mater. Chem. A
Issue Date:
11-Feb-2015
DOI:
10.1039/C4TA07115H
Type:
Article
ISSN:
2050-7488; 2050-7496
Is Supplemented By:
Chen, Z., Adil, K., Weseliński, Ł. J., Belmabkhout, Y., & Eddaoudi, M. (2015). CCDC 1036006: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc13s1kh; DOI:10.5517/cc13s1kh; HANDLE:http://hdl.handle.net/10754/624388; Chen, Z., Adil, K., Weseliński, Ł. J., Belmabkhout, Y., & Eddaoudi, M. (2015). CCDC 1036005: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc13s1jg; DOI:10.5517/cc13s1jg; HANDLE:http://hdl.handle.net/10754/624387; Chen, Z., Adil, K., Weseliński, Ł. J., Belmabkhout, Y., & Eddaoudi, M. (2015). CCDC 1044642: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc14214d; DOI:10.5517/cc14214d; HANDLE:http://hdl.handle.net/10754/624398; Chen, Z., Adil, K., Weseliński, Ł. J., Belmabkhout, Y., & Eddaoudi, M. (2015). CCDC 1036004: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc13s1hf; DOI:10.5517/cc13s1hf; HANDLE:http://hdl.handle.net/10754/624386; Chen, Z., Adil, K., Weseliński, Ł. J., Belmabkhout, Y., & Eddaoudi, M. (2015). CCDC 1036007: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc13s1lj; DOI:10.5517/cc13s1lj; HANDLE:http://hdl.handle.net/10754/624389
Additional Links:
http://xlink.rsc.org/?DOI=C4TA07115H
Appears in Collections:
Articles; Advanced Membranes and Porous Materials Research Center; Physical Sciences and Engineering (PSE) Division; Functional Materials Design, Discovery and Development (FMD3)

Full metadata record

DC FieldValue Language
dc.contributor.authorChen, Zhijieen
dc.contributor.authorAdil, Karimen
dc.contributor.authorWeselinski, Lukasz Janen
dc.contributor.authorBelmabkhout, Youssefen
dc.contributor.authorEddaoudi, Mohameden
dc.date.accessioned2015-10-11T11:02:40Zen
dc.date.available2015-10-11T11:02:40Zen
dc.date.issued2015-02-11en
dc.identifier.citationA supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO 2 capture and hydrocarbon separation 2015, 3 (12):6276 J. Mater. Chem. Aen
dc.identifier.issn2050-7488en
dc.identifier.issn2050-7496en
dc.identifier.doi10.1039/C4TA07115Hen
dc.identifier.urihttp://hdl.handle.net/10754/579558en
dc.description.abstractThe supermolecular building layer (SBL) approach was employed to deliberately synthesize five novel metal–organic frameworks (1–5) with an exposed array of amide or amine functionalities within their pore system. The ability to decorate the pores with nitrogen donor moieties offers potential to evaluate/elucidate the structure–adsorption property relationship. Two MOF platforms, eea-MOF and rtl-MOF, based on pillaring of kgm-a or sql-a layers with heterofunctional 3-connected organic building blocks were targeted and constructed to purposely introduce and expose the desired amide or amine functionalities. Interestingly, gas adsorption properties of eea-MOF-4 (1) and eea-MOF-5 (2) showed that by simply altering the nitrogen donor position within the ligand, it is possible to relatively reduce the pore size of the related eea-MOF material and subsequently increase the associated CO2 uptake. The slightly confined pore space in 2, relative to 1, has enabled an enhancement of the pore local charge density and thus the observed relative increase in the CO2 and H2 isosteric heat of adsorption (Qst). In addition, light hydrocarbon adsorption studies revealed that 2 is more selective toward C2H6 and C3H8 over CH4 than 1, as exemplified for C2H6 : CH4 (5 : 95) or C3H8 : CH4 (5 : 95) binary gas mixtures.en
dc.language.isoenen
dc.publisherRoyal Society of Chemistry (RSC)en
dc.relation.urlhttp://xlink.rsc.org/?DOI=C4TA07115Hen
dc.rightsThis article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. http://creativecommons.org/licenses/by-nc/3.0/en
dc.titleA supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO 2 capture and hydrocarbon separationen
dc.typeArticleen
dc.contributor.departmentFunctional Materials Design, Discovery and Development (FMD3)en
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Centeren
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.identifier.journalJ. Mater. Chem. Aen
dc.eprint.versionPublisher's Version/PDFen
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)en
kaust.authorChen, Zhijieen
kaust.authorAdil, Karimen
kaust.authorWeselinski, Lukasz Janen
kaust.authorBelmabkhout, Youssefen
kaust.authorEddaoudi, Mohameden
dc.relation.isSupplementedByChen, Z., Adil, K., Weseliński, Ł. J., Belmabkhout, Y., & Eddaoudi, M. (2015). CCDC 1036006: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc13s1khen
dc.relation.isSupplementedByDOI:10.5517/cc13s1khen
dc.relation.isSupplementedByHANDLE:http://hdl.handle.net/10754/624388en
dc.relation.isSupplementedByChen, Z., Adil, K., Weseliński, Ł. J., Belmabkhout, Y., & Eddaoudi, M. (2015). CCDC 1036005: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc13s1jgen
dc.relation.isSupplementedByDOI:10.5517/cc13s1jgen
dc.relation.isSupplementedByHANDLE:http://hdl.handle.net/10754/624387en
dc.relation.isSupplementedByChen, Z., Adil, K., Weseliński, Ł. J., Belmabkhout, Y., & Eddaoudi, M. (2015). CCDC 1044642: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc14214den
dc.relation.isSupplementedByDOI:10.5517/cc14214den
dc.relation.isSupplementedByHANDLE:http://hdl.handle.net/10754/624398en
dc.relation.isSupplementedByChen, Z., Adil, K., Weseliński, Ł. J., Belmabkhout, Y., & Eddaoudi, M. (2015). CCDC 1036004: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc13s1hfen
dc.relation.isSupplementedByDOI:10.5517/cc13s1hfen
dc.relation.isSupplementedByHANDLE:http://hdl.handle.net/10754/624386en
dc.relation.isSupplementedByChen, Z., Adil, K., Weseliński, Ł. J., Belmabkhout, Y., & Eddaoudi, M. (2015). CCDC 1036007: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc13s1ljen
dc.relation.isSupplementedByDOI:10.5517/cc13s1ljen
dc.relation.isSupplementedByHANDLE:http://hdl.handle.net/10754/624389en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.