Nano-organocatalyst: magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal–Knorr reaction, aza-Michael addition, and pyrazole synthesis

Handle URI:
http://hdl.handle.net/10754/577051
Title:
Nano-organocatalyst: magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal–Knorr reaction, aza-Michael addition, and pyrazole synthesis
Authors:
Polshettiwar, Vivek ( 0000-0003-1375-9668 ) ; Varma, Rajender S.
Abstract:
Postsynthetic Surface modification of magnetic nanoparticles by glutathione imparts desirable chemical functionality and enables the generation of catalytic sites on the surfaces of ensuing organocatalysts. In this article, we discuss the developments, unique activity, and high selectivity of nano-organocatalysts for microwave-assisted Paal-Knorr reaction, aza-Michael addition, and pyrazole synthesis. Their insoluble character Coupled with paramagnetic nature enables easy separation of these nano-catalysts from the reaction mixture using external magnet, which eliminates the requirement of catalyst filtration. Published by Elsevier Ltd.
KAUST Department:
Physical Sciences and Engineering (PSE) Division; KAUST Catalysis Center (KCC)
Publisher:
Elsevier BV
Journal:
Tetrahedron
Issue Date:
Jan-2010
DOI:
10.1016/j.tet.2009.11.015
Type:
Article
ISSN:
0040-4020
Sponsors:
V.P. thanks U.S. Environmental Protection Agency, Cincinnati for ORISE research fellowship.
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division; KAUST Catalysis Center (KCC)

Full metadata record

DC FieldValue Language
dc.contributor.authorPolshettiwar, Viveken
dc.contributor.authorVarma, Rajender S.en
dc.date.accessioned2015-09-10T09:27:47Zen
dc.date.available2015-09-10T09:27:47Zen
dc.date.issued2010-01en
dc.identifier.issn0040-4020en
dc.identifier.doi10.1016/j.tet.2009.11.015en
dc.identifier.urihttp://hdl.handle.net/10754/577051en
dc.description.abstractPostsynthetic Surface modification of magnetic nanoparticles by glutathione imparts desirable chemical functionality and enables the generation of catalytic sites on the surfaces of ensuing organocatalysts. In this article, we discuss the developments, unique activity, and high selectivity of nano-organocatalysts for microwave-assisted Paal-Knorr reaction, aza-Michael addition, and pyrazole synthesis. Their insoluble character Coupled with paramagnetic nature enables easy separation of these nano-catalysts from the reaction mixture using external magnet, which eliminates the requirement of catalyst filtration. Published by Elsevier Ltd.en
dc.description.sponsorshipV.P. thanks U.S. Environmental Protection Agency, Cincinnati for ORISE research fellowship.en
dc.publisherElsevier BVen
dc.titleNano-organocatalyst: magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal–Knorr reaction, aza-Michael addition, and pyrazole synthesisen
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.contributor.departmentKAUST Catalysis Center (KCC)en
dc.identifier.journalTetrahedronen
dc.contributor.institutionUS EPA, Sustainable Technol Div, Natl Risk Management Res Lab, Cincinnati, OH 45268 USAen
kaust.authorPolshettiwar, Viveken
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.