An FMM-FFT accelerated integral equation solver for characterizing electromagnetic wave propagation in mine tunnels and galleries loaded with conductors

Handle URI:
http://hdl.handle.net/10754/564961
Title:
An FMM-FFT accelerated integral equation solver for characterizing electromagnetic wave propagation in mine tunnels and galleries loaded with conductors
Authors:
Yücel, Abdulkadir C.; Liu, Yang; Bagci, Hakan ( 0000-0003-3867-5786 ) ; Michielssen, Eric
Abstract:
Reliable wireless communication and tracking systems in underground mines are of paramount importance to increase miners' productivity while monitoring the environmental conditions and increasing the effectiveness of rescue operations. Key to the design and optimization of such systems are electromagnetic (EM) simulation tools capable of analyzing wave propagation in electromagnetically large mine tunnels and galleries loaded with conducting cables (power, telephone) and mining equipment (trolleys, rails, carts), and potentially partially obstructed by debris from a cave-in. Current tools for simulating EM propagation in mine environments leverage (multi-) modal decompositions (Emslie et. al., IEEE Trans. Antennas Propag., 23, 192-205, 1975; Sun and Akyildiz, IEEE Trans. Commun., 58, 1758-1768, 2010), ray-tracing techniques (Zhang, IEEE Tran. Vehic. Tech., 5, 1308-1314, 2003), or full wave methods. Modal approaches and ray-tracing techniques cannot accurately account for the presence of conductors, intricate details of transmitters/receivers, wall roughness, or unstructured debris from a cave-in. Classical full-wave methods do not suffer from such restrictions. However, they require prohibitively large computational resources when applied to the analysis of electromagnetically large tunnels loaded with conductors. Recently, an efficient hybrid method of moment and transmission line solver has been developed to analyze the EM wave propagation inside tunnels loaded with conductors (Brocker et. al., in Proc IEEE AP-S Symp, pp.1,2, 2012). However, the applicability of the solver is limited to the characterization of EM wave propagation at medium frequency band.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division; Electrical Engineering Program; Computational Electromagnetics Laboratory
Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Journal:
2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)
Conference/Event name:
2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI 2014
Issue Date:
Jul-2014
DOI:
10.1109/USNC-URSI.2014.6955447
Type:
Conference Paper
ISBN:
9781479937462
Appears in Collections:
Conference Papers; Electrical Engineering Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorYücel, Abdulkadir C.en
dc.contributor.authorLiu, Yangen
dc.contributor.authorBagci, Hakanen
dc.contributor.authorMichielssen, Ericen
dc.date.accessioned2015-08-04T07:26:22Zen
dc.date.available2015-08-04T07:26:22Zen
dc.date.issued2014-07en
dc.identifier.isbn9781479937462en
dc.identifier.doi10.1109/USNC-URSI.2014.6955447en
dc.identifier.urihttp://hdl.handle.net/10754/564961en
dc.description.abstractReliable wireless communication and tracking systems in underground mines are of paramount importance to increase miners' productivity while monitoring the environmental conditions and increasing the effectiveness of rescue operations. Key to the design and optimization of such systems are electromagnetic (EM) simulation tools capable of analyzing wave propagation in electromagnetically large mine tunnels and galleries loaded with conducting cables (power, telephone) and mining equipment (trolleys, rails, carts), and potentially partially obstructed by debris from a cave-in. Current tools for simulating EM propagation in mine environments leverage (multi-) modal decompositions (Emslie et. al., IEEE Trans. Antennas Propag., 23, 192-205, 1975; Sun and Akyildiz, IEEE Trans. Commun., 58, 1758-1768, 2010), ray-tracing techniques (Zhang, IEEE Tran. Vehic. Tech., 5, 1308-1314, 2003), or full wave methods. Modal approaches and ray-tracing techniques cannot accurately account for the presence of conductors, intricate details of transmitters/receivers, wall roughness, or unstructured debris from a cave-in. Classical full-wave methods do not suffer from such restrictions. However, they require prohibitively large computational resources when applied to the analysis of electromagnetically large tunnels loaded with conductors. Recently, an efficient hybrid method of moment and transmission line solver has been developed to analyze the EM wave propagation inside tunnels loaded with conductors (Brocker et. al., in Proc IEEE AP-S Symp, pp.1,2, 2012). However, the applicability of the solver is limited to the characterization of EM wave propagation at medium frequency band.en
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.titleAn FMM-FFT accelerated integral equation solver for characterizing electromagnetic wave propagation in mine tunnels and galleries loaded with conductorsen
dc.typeConference Paperen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.contributor.departmentElectrical Engineering Programen
dc.contributor.departmentComputational Electromagnetics Laboratoryen
dc.identifier.journal2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)en
dc.conference.date6 July 2014 through 11 July 2014en
dc.conference.name2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI 2014en
dc.contributor.institutionDepartment of Electrical Engineering and Computer Science, University of MichiganAnn Arbor, MI, United Statesen
kaust.authorBagci, Hakanen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.