An algorithm for reduct cardinality minimization

Handle URI:
http://hdl.handle.net/10754/564824
Title:
An algorithm for reduct cardinality minimization
Authors:
AbouEisha, Hassan M. ( 0000-0003-4560-7175 ) ; Al Farhan, Mohammed; Chikalov, Igor; Moshkov, Mikhail ( 0000-0003-0085-9483 )
Abstract:
This is devoted to the consideration of a new algorithm for reduct cardinality minimization. This algorithm transforms the initial table to a decision table of a special kind, simplify this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. Results of computer experiments with decision tables from UCI ML Repository are discussed. © 2013 IEEE.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division; Applied Mathematics and Computational Science Program; Extensions of Dynamic Programming, Machine Learning and Discrete Optimization Research Group; Computer Science Program
Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Journal:
2013 IEEE International Conference on Granular Computing (GrC)
Conference/Event name:
2013 IEEE International Conference on Granular Computing, GrC 2013
Issue Date:
Dec-2013
DOI:
10.1109/GrC.2013.6740370
Type:
Conference Paper
ISBN:
9781479912810
Appears in Collections:
Conference Papers; Applied Mathematics and Computational Science Program; Computer Science Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorAbouEisha, Hassan M.en
dc.contributor.authorAl Farhan, Mohammeden
dc.contributor.authorChikalov, Igoren
dc.contributor.authorMoshkov, Mikhailen
dc.date.accessioned2015-08-04T07:17:21Zen
dc.date.available2015-08-04T07:17:21Zen
dc.date.issued2013-12en
dc.identifier.isbn9781479912810en
dc.identifier.doi10.1109/GrC.2013.6740370en
dc.identifier.urihttp://hdl.handle.net/10754/564824en
dc.description.abstractThis is devoted to the consideration of a new algorithm for reduct cardinality minimization. This algorithm transforms the initial table to a decision table of a special kind, simplify this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. Results of computer experiments with decision tables from UCI ML Repository are discussed. © 2013 IEEE.en
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.subjectdecision treeen
dc.subjectdynamic programmingen
dc.subjectreducten
dc.titleAn algorithm for reduct cardinality minimizationen
dc.typeConference Paperen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.contributor.departmentApplied Mathematics and Computational Science Programen
dc.contributor.departmentExtensions of Dynamic Programming, Machine Learning and Discrete Optimization Research Groupen
dc.contributor.departmentComputer Science Programen
dc.identifier.journal2013 IEEE International Conference on Granular Computing (GrC)en
dc.conference.date13 December 2013 through 15 December 2013en
dc.conference.name2013 IEEE International Conference on Granular Computing, GrC 2013en
dc.conference.locationBeijingen
kaust.authorAbouEisha, Hassan M.en
kaust.authorChikalov, Igoren
kaust.authorMoshkov, Mikhailen
kaust.authorAl Farhan, Mohammeden
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.