Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system

Handle URI:
http://hdl.handle.net/10754/564679
Title:
Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system
Authors:
Chen, PinChia; Wang, Weicheng; Roberts, William L. ( 0000-0003-1999-2831 ) ; Fang, Tiegang
Abstract:
Fuel spray and atomization characteristics play an important role in the performance of internal combustion engines. As the reserves of petroleum fuel are expected to be depleted within a few decades, finding alternative fuels that are economically viable and sustainable to replace the petroleum fuel has attracted much research attention. In this work, the spray and atomization characteristics were investigated for commercial No. 2 diesel fuel, biodiesel (FAME) derived from waste cooking oil (B100), 20% biodiesel blended diesel fuel (B20), renewable diesel fuel produced in house, and civil aircraft jet fuel (Jet-A). Droplet diameters and particle size distributions were measured by a laser diffraction particle analyzing system and the spray tip penetrations and cone angles were acquired using a high speed imaging technique. All experiments were conducted by employing a common-rail high-pressure fuel injection system with a single-hole nozzle under room temperature and pressure. The experimental results showed that biodiesel and jet fuel had different features compared with diesel. Longer spray tip penetration and larger droplet diameters were observed for B100. The smaller droplet size of the Jet-A were believed to be caused by its relatively lower viscosity and surface tension. B20 showed similar characteristics to diesel but with slightly larger droplet sizes and shorter tip penetration. Renewable diesel fuel showed closer droplet size and spray penetration to Jet-A with both smaller than diesel. As a result, optimizing the trade-off between spray volume and droplet size for different fuels remains a great challenge. However, high-pressure injection helps to optimize the trade-off of spray volume and droplet sizes. Furthermore, it was observed that the smallest droplets were within a region near the injector nozzle tip and grew larger along the axial and radial direction. The variation of droplet diameters became smaller with increasing injection pressure. © 2012 Elsevier Ltd. All rights reserved.
KAUST Department:
Clean Combustion Research Center; Mechanical Engineering Program; Physical Sciences and Engineering (PSE) Division
Publisher:
Elsevier BV
Journal:
Fuel
Issue Date:
Jan-2013
DOI:
10.1016/j.fuel.2012.08.013
Type:
Article
ISSN:
00162361
Sponsors:
This material is based, in part, upon work supported by the Faculty Research and Professional Development (FRPD) Fund from the North Carolina State University, the Natural Science Foundation under Grant No. CBET-0854174, and the National Science Foundation EFRI Program under Grant EFRI-093772. The authors also thank Dr. Brian Farkas and Dr. Allen Foegeding of the Department of Food Science at the North Carolina State University for their help to measure the fuel properties.
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

Full metadata record

DC FieldValue Language
dc.contributor.authorChen, PinChiaen
dc.contributor.authorWang, Weichengen
dc.contributor.authorRoberts, William L.en
dc.contributor.authorFang, Tiegangen
dc.date.accessioned2015-08-04T07:12:04Zen
dc.date.available2015-08-04T07:12:04Zen
dc.date.issued2013-01en
dc.identifier.issn00162361en
dc.identifier.doi10.1016/j.fuel.2012.08.013en
dc.identifier.urihttp://hdl.handle.net/10754/564679en
dc.description.abstractFuel spray and atomization characteristics play an important role in the performance of internal combustion engines. As the reserves of petroleum fuel are expected to be depleted within a few decades, finding alternative fuels that are economically viable and sustainable to replace the petroleum fuel has attracted much research attention. In this work, the spray and atomization characteristics were investigated for commercial No. 2 diesel fuel, biodiesel (FAME) derived from waste cooking oil (B100), 20% biodiesel blended diesel fuel (B20), renewable diesel fuel produced in house, and civil aircraft jet fuel (Jet-A). Droplet diameters and particle size distributions were measured by a laser diffraction particle analyzing system and the spray tip penetrations and cone angles were acquired using a high speed imaging technique. All experiments were conducted by employing a common-rail high-pressure fuel injection system with a single-hole nozzle under room temperature and pressure. The experimental results showed that biodiesel and jet fuel had different features compared with diesel. Longer spray tip penetration and larger droplet diameters were observed for B100. The smaller droplet size of the Jet-A were believed to be caused by its relatively lower viscosity and surface tension. B20 showed similar characteristics to diesel but with slightly larger droplet sizes and shorter tip penetration. Renewable diesel fuel showed closer droplet size and spray penetration to Jet-A with both smaller than diesel. As a result, optimizing the trade-off between spray volume and droplet size for different fuels remains a great challenge. However, high-pressure injection helps to optimize the trade-off of spray volume and droplet sizes. Furthermore, it was observed that the smallest droplets were within a region near the injector nozzle tip and grew larger along the axial and radial direction. The variation of droplet diameters became smaller with increasing injection pressure. © 2012 Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipThis material is based, in part, upon work supported by the Faculty Research and Professional Development (FRPD) Fund from the North Carolina State University, the Natural Science Foundation under Grant No. CBET-0854174, and the National Science Foundation EFRI Program under Grant EFRI-093772. The authors also thank Dr. Brian Farkas and Dr. Allen Foegeding of the Department of Food Science at the North Carolina State University for their help to measure the fuel properties.en
dc.publisherElsevier BVen
dc.subjectBiofuelen
dc.subjectCommon railen
dc.subjectDieselen
dc.subjectHigh-pressure injectionen
dc.subjectJet fuelen
dc.titleSpray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection systemen
dc.typeArticleen
dc.contributor.departmentClean Combustion Research Centeren
dc.contributor.departmentMechanical Engineering Programen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.identifier.journalFuelen
dc.contributor.institutionDepartment of Mechanical and Aerospace Engineering, North Carolina State University, Box 7910, 911 Oval Drive-Campus, Raleigh, NC, 27695, United Statesen
kaust.authorRoberts, William L.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.