Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

Handle URI:
http://hdl.handle.net/10754/564120
Title:
Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements
Authors:
Cai, Mick Y.; Wang, Lixin; Parkes, Stephen; Strauss, Josiah; McCabe, Matthew ( 0000-0002-1279-5272 ) ; Evans, Jason P.; Griffiths, Alan D.
Abstract:
The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate between different hydrological components and add insight into expected hydrological behavior.
KAUST Department:
Water Desalination and Reuse Research Center (WDRC); Biological and Environmental Sciences and Engineering (BESE) Division; Environmental Science and Engineering Program; Water Desalination and Reuse Research Center; Earth System Observation and Modelling
Publisher:
Elsevier BV
Journal:
Journal of Hydrology
Issue Date:
Apr-2015
DOI:
10.1016/j.jhydrol.2015.01.019
Type:
Article
ISSN:
00221694
Sponsors:
This project was partially supported by Indiana University-Purdue University Indianapolis (IUPUI) iM2CS-GEIRE and Indiana University IUCRG grants to L. Wang. We thank the comments from two anonymous reviewers and from the associate editor; their comments significantly improved the quality of the manuscript.
Appears in Collections:
Articles; Environmental Science and Engineering Program; Water Desalination and Reuse Research Center (WDRC); Biological and Environmental Sciences and Engineering (BESE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorCai, Mick Y.en
dc.contributor.authorWang, Lixinen
dc.contributor.authorParkes, Stephenen
dc.contributor.authorStrauss, Josiahen
dc.contributor.authorMcCabe, Matthewen
dc.contributor.authorEvans, Jason P.en
dc.contributor.authorGriffiths, Alan D.en
dc.date.accessioned2015-08-03T12:33:01Zen
dc.date.available2015-08-03T12:33:01Zen
dc.date.issued2015-04en
dc.identifier.issn00221694en
dc.identifier.doi10.1016/j.jhydrol.2015.01.019en
dc.identifier.urihttp://hdl.handle.net/10754/564120en
dc.description.abstractThe stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate between different hydrological components and add insight into expected hydrological behavior.en
dc.description.sponsorshipThis project was partially supported by Indiana University-Purdue University Indianapolis (IUPUI) iM2CS-GEIRE and Indiana University IUCRG grants to L. Wang. We thank the comments from two anonymous reviewers and from the associate editor; their comments significantly improved the quality of the manuscript.en
dc.publisherElsevier BVen
dc.subjectFTIRen
dc.subjectHydrogenen
dc.subjectISOLSMen
dc.subjectIsotopeen
dc.subjectOxygenen
dc.subjectSpectroscopyen
dc.titleStable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurementsen
dc.typeArticleen
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)en
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Divisionen
dc.contributor.departmentEnvironmental Science and Engineering Programen
dc.contributor.departmentWater Desalination and Reuse Research Centeren
dc.contributor.departmentEarth System Observation and Modellingen
dc.identifier.journalJournal of Hydrologyen
dc.contributor.institutionWater Research Center, School of Civil and Environmental Engineering, University of New South WalesSydney, NSW, Australiaen
dc.contributor.institutionDepartment of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI)Indianapolis, IN, United Statesen
dc.contributor.institutionDolan Integration GroupBoulder, CO, United Statesen
dc.contributor.institutionClimate Change Research Centre, University of New South WalesSydney, NSW, Australiaen
dc.contributor.institutionInstitute for Environmental Research, Australian Nuclear Science and Technology OrganisationLucas Heights, NSW, Australiaen
kaust.authorParkes, Stephenen
kaust.authorMcCabe, Matthewen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.