A comprehensive mechanistic picture of the isomerizing alkoxycarbonylation of plant oils

Handle URI:
http://hdl.handle.net/10754/563911
Title:
A comprehensive mechanistic picture of the isomerizing alkoxycarbonylation of plant oils
Authors:
Roesle, Philipp; Caporaso, Lucia; Schnitte, Manuel; Goldbach, Verena; Cavallo, Luigi ( 0000-0002-1398-338X ) ; Mecking, Stefan
Abstract:
Theoretical studies on the overall catalytic cycle of isomerizing alkoxycarbonylation reveal the steric congestion around the diphosphine coordinated Pd-center as decisive for selectivity and productivity. The energy profile of isomerization is flat with diphosphines of variable steric bulk, but the preference for the formation of the linear Pd-alkyl species is more pronounced with sterically demanding diphosphines. CO insertion is feasible and reversible for all Pd-alkyl species studied and only little affected by the diphosphine. The overall rate-limiting step associated with the highest energetic barrier is methanolysis of the Pd-acyl species. Considering methanolysis of the linear Pd-acyl species, whose energetic barrier is lowest within all the Pd-acyl species studied, the barrier is calculated to be lower for more congesting diphosphines. Calculations indicate that energy differences of methanolysis of the linear versus branched Pd-acyls are more pronounced for more bulky diphosphines, due to involvement of different numbers of methanol molecules in the transition state. Experimental studies under pressure reactor conditions showed a faster conversion of shorter chain olefin substrates, but virtually no effect of the double bond position within the substrate. Compared to higher olefins, ethylene carbonylation under identical conditions is much faster, likely due not just to the occurrence of reactive linear acyls exclusively but also to an intrinsically favorable insertion reactivity of the olefin. The alcoholysis reaction is slowed down for higher alcohols, evidenced by pressure reactor and NMR studies. Multiple unsaturated fatty acids were observed to form a terminal Pd-allyl species upon reaction with the catalytically active Pd-hydride species. This process and further carbonylation are slow compared to isomerizing methoxycarbonylation of monounsaturated fatty acids, but selective.
KAUST Department:
Biological and Environmental Sciences and Engineering (BESE) Division; KAUST Catalysis Center (KCC); Physical Sciences and Engineering (PSE) Division; Chemical Science Program
Publisher:
American Chemical Society (ACS)
Journal:
Journal of the American Chemical Society
Issue Date:
3-Dec-2014
DOI:
10.1021/ja508447d
Type:
Article
ISSN:
00027863
Sponsors:
P.R. gratefully acknowledges support from the Carl-Zeiss-Foundation by a graduate fellowship. We thank Dako AG for donation of high-oleic sunflower oils.
Is Supplemented By:
Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010345: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbs3; DOI:10.5517/cc12xbs3; HANDLE:http://hdl.handle.net/10754/624344; Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010346: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbt4; DOI:10.5517/cc12xbt4; HANDLE:http://hdl.handle.net/10754/624345; Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010347: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbv5; DOI:10.5517/cc12xbv5; HANDLE:http://hdl.handle.net/10754/624346; Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010348: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbw6; DOI:10.5517/cc12xbw6; HANDLE:http://hdl.handle.net/10754/624347; Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010349: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbx7; DOI:10.5517/cc12xbx7; HANDLE:http://hdl.handle.net/10754/624348; Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010350: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xby8; DOI:10.5517/cc12xby8; HANDLE:http://hdl.handle.net/10754/624349; Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010351: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbz9; DOI:10.5517/cc12xbz9; HANDLE:http://hdl.handle.net/10754/624350
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division; Chemical Science Program; KAUST Catalysis Center (KCC); Biological and Environmental Sciences and Engineering (BESE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorRoesle, Philippen
dc.contributor.authorCaporaso, Luciaen
dc.contributor.authorSchnitte, Manuelen
dc.contributor.authorGoldbach, Verenaen
dc.contributor.authorCavallo, Luigien
dc.contributor.authorMecking, Stefanen
dc.date.accessioned2015-08-03T12:19:15Zen
dc.date.available2015-08-03T12:19:15Zen
dc.date.issued2014-12-03en
dc.identifier.issn00027863en
dc.identifier.doi10.1021/ja508447den
dc.identifier.urihttp://hdl.handle.net/10754/563911en
dc.description.abstractTheoretical studies on the overall catalytic cycle of isomerizing alkoxycarbonylation reveal the steric congestion around the diphosphine coordinated Pd-center as decisive for selectivity and productivity. The energy profile of isomerization is flat with diphosphines of variable steric bulk, but the preference for the formation of the linear Pd-alkyl species is more pronounced with sterically demanding diphosphines. CO insertion is feasible and reversible for all Pd-alkyl species studied and only little affected by the diphosphine. The overall rate-limiting step associated with the highest energetic barrier is methanolysis of the Pd-acyl species. Considering methanolysis of the linear Pd-acyl species, whose energetic barrier is lowest within all the Pd-acyl species studied, the barrier is calculated to be lower for more congesting diphosphines. Calculations indicate that energy differences of methanolysis of the linear versus branched Pd-acyls are more pronounced for more bulky diphosphines, due to involvement of different numbers of methanol molecules in the transition state. Experimental studies under pressure reactor conditions showed a faster conversion of shorter chain olefin substrates, but virtually no effect of the double bond position within the substrate. Compared to higher olefins, ethylene carbonylation under identical conditions is much faster, likely due not just to the occurrence of reactive linear acyls exclusively but also to an intrinsically favorable insertion reactivity of the olefin. The alcoholysis reaction is slowed down for higher alcohols, evidenced by pressure reactor and NMR studies. Multiple unsaturated fatty acids were observed to form a terminal Pd-allyl species upon reaction with the catalytically active Pd-hydride species. This process and further carbonylation are slow compared to isomerizing methoxycarbonylation of monounsaturated fatty acids, but selective.en
dc.description.sponsorshipP.R. gratefully acknowledges support from the Carl-Zeiss-Foundation by a graduate fellowship. We thank Dako AG for donation of high-oleic sunflower oils.en
dc.publisherAmerican Chemical Society (ACS)en
dc.titleA comprehensive mechanistic picture of the isomerizing alkoxycarbonylation of plant oilsen
dc.typeArticleen
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Divisionen
dc.contributor.departmentKAUST Catalysis Center (KCC)en
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.contributor.departmentChemical Science Programen
dc.identifier.journalJournal of the American Chemical Societyen
dc.contributor.institutionDepartment of Chemistry, University of KonstanzKonstanz, Germanyen
dc.contributor.institutionDepartment of Chemistry, University of Salerno, Via Giovanni Paolo IIFisciano, SA, Italyen
kaust.authorCavallo, Luigien
dc.relation.isSupplementedByRoesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010345: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbs3en
dc.relation.isSupplementedByDOI:10.5517/cc12xbs3en
dc.relation.isSupplementedByHANDLE:http://hdl.handle.net/10754/624344en
dc.relation.isSupplementedByRoesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010346: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbt4en
dc.relation.isSupplementedByDOI:10.5517/cc12xbt4en
dc.relation.isSupplementedByHANDLE:http://hdl.handle.net/10754/624345en
dc.relation.isSupplementedByRoesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010347: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbv5en
dc.relation.isSupplementedByDOI:10.5517/cc12xbv5en
dc.relation.isSupplementedByHANDLE:http://hdl.handle.net/10754/624346en
dc.relation.isSupplementedByRoesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010348: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbw6en
dc.relation.isSupplementedByDOI:10.5517/cc12xbw6en
dc.relation.isSupplementedByHANDLE:http://hdl.handle.net/10754/624347en
dc.relation.isSupplementedByRoesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010349: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbx7en
dc.relation.isSupplementedByDOI:10.5517/cc12xbx7en
dc.relation.isSupplementedByHANDLE:http://hdl.handle.net/10754/624348en
dc.relation.isSupplementedByRoesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010350: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xby8en
dc.relation.isSupplementedByDOI:10.5517/cc12xby8en
dc.relation.isSupplementedByHANDLE:http://hdl.handle.net/10754/624349en
dc.relation.isSupplementedByRoesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010351: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbz9en
dc.relation.isSupplementedByDOI:10.5517/cc12xbz9en
dc.relation.isSupplementedByHANDLE:http://hdl.handle.net/10754/624350en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.