Structural and electronic properties of silicene on MgX2 (X = Cl, Br, and I)

Handle URI:
http://hdl.handle.net/10754/563658
Title:
Structural and electronic properties of silicene on MgX2 (X = Cl, Br, and I)
Authors:
Zhu, Jiajie ( 0000-0002-1930-7884 ) ; Schwingenschlögl, Udo ( 0000-0003-4179-7231 )
Abstract:
Silicene is a monolayer of Si atoms in a two-dimensional honeycomb lattice, being expected to be compatible with current Si-based nanoelectronics. The behavior of silicene is strongly influenced by the substrate. In this context, its structural and electronic properties on MgX2 (X = Cl, Br, and I) have been investigated using first-principles calculations. Different locations of the Si atoms are found to be energetically degenerate because of the weak van der Waals interaction with the substrates. The Si buckling height is below 0.55 Å, which is close to the value of free-standing silicene (0.49 Å). Importantly, the Dirac cone of silicene is well preserved on MgX2 (located slightly above the Fermi level), and the band gaps induced by the substrate are less than 0.1 eV. Application of an external electric field and stacking can be used to increase the band gap. © 2014 American Chemical Society.
KAUST Department:
Physical Sciences and Engineering (PSE) Division; Materials Science and Engineering Program; Computational Physics and Materials Science (CPMS)
Publisher:
American Chemical Society (ACS)
Journal:
ACS Applied Materials & Interfaces
Issue Date:
23-Jul-2014
DOI:
10.1021/am502469m
Type:
Article
ISSN:
19448244
Sponsors:
Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division; Materials Science and Engineering Program; Computational Physics and Materials Science (CPMS)

Full metadata record

DC FieldValue Language
dc.contributor.authorZhu, Jiajieen
dc.contributor.authorSchwingenschlögl, Udoen
dc.date.accessioned2015-08-03T12:05:13Zen
dc.date.available2015-08-03T12:05:13Zen
dc.date.issued2014-07-23en
dc.identifier.issn19448244en
dc.identifier.doi10.1021/am502469men
dc.identifier.urihttp://hdl.handle.net/10754/563658en
dc.description.abstractSilicene is a monolayer of Si atoms in a two-dimensional honeycomb lattice, being expected to be compatible with current Si-based nanoelectronics. The behavior of silicene is strongly influenced by the substrate. In this context, its structural and electronic properties on MgX2 (X = Cl, Br, and I) have been investigated using first-principles calculations. Different locations of the Si atoms are found to be energetically degenerate because of the weak van der Waals interaction with the substrates. The Si buckling height is below 0.55 Å, which is close to the value of free-standing silicene (0.49 Å). Importantly, the Dirac cone of silicene is well preserved on MgX2 (located slightly above the Fermi level), and the band gaps induced by the substrate are less than 0.1 eV. Application of an external electric field and stacking can be used to increase the band gap. © 2014 American Chemical Society.en
dc.description.sponsorshipResearch reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).en
dc.publisherAmerican Chemical Society (ACS)en
dc.subjectelectric fielden
dc.subjectsiliceneen
dc.subjectstrainen
dc.subjectsubstrateen
dc.titleStructural and electronic properties of silicene on MgX2 (X = Cl, Br, and I)en
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.contributor.departmentMaterials Science and Engineering Programen
dc.contributor.departmentComputational Physics and Materials Science (CPMS)en
dc.identifier.journalACS Applied Materials & Interfacesen
kaust.authorZhu, Jiajieen
kaust.authorSchwingenschlögl, Udoen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.