Minimizers of a Class of Constrained Vectorial Variational Problems: Part I

Handle URI:
http://hdl.handle.net/10754/563504
Title:
Minimizers of a Class of Constrained Vectorial Variational Problems: Part I
Authors:
Hajaiej, Hichem; Markowich, Peter A. ( 0000-0002-3704-1821 ) ; Trabelsi, Saber
Abstract:
In this paper, we prove the existence of minimizers of a class of multiconstrained variational problems. We consider systems involving a nonlinearity that does not satisfy compactness, monotonicity, neither symmetry properties. Our approach hinges on the concentration-compactness approach. In the second part, we will treat orthogonal constrained problems for another class of integrands using density matrices method. © 2014 Springer Basel.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division; Applied Mathematics and Computational Science Program
Publisher:
Springer Science + Business Media
Journal:
Milan Journal of Mathematics
Issue Date:
18-Apr-2014
DOI:
10.1007/s00032-014-0218-6
ARXIV:
arXiv:1310.2517
Type:
Article
ISSN:
14249286
Sponsors:
The first author thanks the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP-VPP-124.
Additional Links:
http://arxiv.org/abs/arXiv:1310.2517v1
Appears in Collections:
Articles; Applied Mathematics and Computational Science Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorHajaiej, Hichemen
dc.contributor.authorMarkowich, Peter A.en
dc.contributor.authorTrabelsi, Saberen
dc.date.accessioned2015-08-03T11:53:05Zen
dc.date.available2015-08-03T11:53:05Zen
dc.date.issued2014-04-18en
dc.identifier.issn14249286en
dc.identifier.doi10.1007/s00032-014-0218-6en
dc.identifier.urihttp://hdl.handle.net/10754/563504en
dc.description.abstractIn this paper, we prove the existence of minimizers of a class of multiconstrained variational problems. We consider systems involving a nonlinearity that does not satisfy compactness, monotonicity, neither symmetry properties. Our approach hinges on the concentration-compactness approach. In the second part, we will treat orthogonal constrained problems for another class of integrands using density matrices method. © 2014 Springer Basel.en
dc.description.sponsorshipThe first author thanks the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP-VPP-124.en
dc.publisherSpringer Science + Business Mediaen
dc.relation.urlhttp://arxiv.org/abs/arXiv:1310.2517v1en
dc.subjectconstrained minimization problemen
dc.subjectVectorial Schrödingeren
dc.titleMinimizers of a Class of Constrained Vectorial Variational Problems: Part Ien
dc.typeArticleen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.contributor.departmentApplied Mathematics and Computational Science Programen
dc.identifier.journalMilan Journal of Mathematicsen
dc.contributor.institutionDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabiaen
dc.identifier.arxividarXiv:1310.2517en
kaust.authorMarkowich, Peter A.en
kaust.authorTrabelsi, Saberen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.