Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation

Handle URI:
http://hdl.handle.net/10754/563234
Title:
Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation
Authors:
Liu, Xin; Duan, Ting; Sui, Yanhui; Meng, Changgong; Han, Yu ( 0000-0003-1462-1118 )
Abstract:
We addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects on h-BN, which act as strong trapping sites for Cu atoms and inhibit their clustering. The strong binding of Cu atoms at boron vacancy also up-shifts the energy level of Cu-d states to the Fermi level and promotes the formation of peroxide-like intermediate. CO oxidation over Cu atoms embedded in h-BN would proceed through the Langmuir-Hinshelwood mechanism with the formation of a peroxide-like complex by reaction of coadsorbed CO and O2, with the dissociation of which the a CO2 molecule and an adsorbed O atom are formed. Then, the embedded Cu atom is regenerated by the reaction of another gaseous CO with the remnant O atom. The calculated energy barriers for the formation and dissociation of peroxide complex and regeneration of embedded Cu atoms are as low as 0.26, 0.11 and 0.03 eV, respectively, indicating the potential high catalytic performance of Cu atoms embedded in h-BN for low temperature CO oxidation. © the Partner Organisations 2014.
KAUST Department:
Advanced Membranes and Porous Materials Research Center; Physical Sciences and Engineering (PSE) Division; Chemical Science Program; Nanostructured Functional Materials (NFM) laboratory
Publisher:
Royal Society of Chemistry (RSC)
Journal:
RSC Advances
Issue Date:
2014
DOI:
10.1039/c4ra06436d
Type:
Article
ISSN:
20462069
Sponsors:
This work was supported by NSFC (21373036, 21103015, 21271037 and 11174045), the Fundamental Research Funds for the Central Universities (DUT12LK14 and DUT14LK09), the Key Laboratory of Coastal Zone Environmental Processes YICCAS (201203), the Key Science and Technology International Cooperation Foundation of Hainan Province, China (KJHZ2014-08) and the Special Academic Partner GCR Program from King Abdullah University of Science and Technology. Y.H. would also thank Dalian University of Technology for the Seasky Professorship.
Appears in Collections:
Articles; Advanced Membranes and Porous Materials Research Center; Physical Sciences and Engineering (PSE) Division; Chemical Science Program

Full metadata record

DC FieldValue Language
dc.contributor.authorLiu, Xinen
dc.contributor.authorDuan, Tingen
dc.contributor.authorSui, Yanhuien
dc.contributor.authorMeng, Changgongen
dc.contributor.authorHan, Yuen
dc.date.accessioned2015-08-03T11:43:46Zen
dc.date.available2015-08-03T11:43:46Zen
dc.date.issued2014en
dc.identifier.issn20462069en
dc.identifier.doi10.1039/c4ra06436den
dc.identifier.urihttp://hdl.handle.net/10754/563234en
dc.description.abstractWe addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects on h-BN, which act as strong trapping sites for Cu atoms and inhibit their clustering. The strong binding of Cu atoms at boron vacancy also up-shifts the energy level of Cu-d states to the Fermi level and promotes the formation of peroxide-like intermediate. CO oxidation over Cu atoms embedded in h-BN would proceed through the Langmuir-Hinshelwood mechanism with the formation of a peroxide-like complex by reaction of coadsorbed CO and O2, with the dissociation of which the a CO2 molecule and an adsorbed O atom are formed. Then, the embedded Cu atom is regenerated by the reaction of another gaseous CO with the remnant O atom. The calculated energy barriers for the formation and dissociation of peroxide complex and regeneration of embedded Cu atoms are as low as 0.26, 0.11 and 0.03 eV, respectively, indicating the potential high catalytic performance of Cu atoms embedded in h-BN for low temperature CO oxidation. © the Partner Organisations 2014.en
dc.description.sponsorshipThis work was supported by NSFC (21373036, 21103015, 21271037 and 11174045), the Fundamental Research Funds for the Central Universities (DUT12LK14 and DUT14LK09), the Key Laboratory of Coastal Zone Environmental Processes YICCAS (201203), the Key Science and Technology International Cooperation Foundation of Hainan Province, China (KJHZ2014-08) and the Special Academic Partner GCR Program from King Abdullah University of Science and Technology. Y.H. would also thank Dalian University of Technology for the Seasky Professorship.en
dc.publisherRoyal Society of Chemistry (RSC)en
dc.titleCopper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigationen
dc.typeArticleen
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Centeren
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.contributor.departmentChemical Science Programen
dc.contributor.departmentNanostructured Functional Materials (NFM) laboratoryen
dc.identifier.journalRSC Advancesen
dc.contributor.institutionSchool of Chemistry, Dalian University of Technology, Dalian, Chinaen
kaust.authorHan, Yuen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.