The effect of surface colour on the formation of marine micro and macrofouling communities

Handle URI:
http://hdl.handle.net/10754/562843
Title:
The effect of surface colour on the formation of marine micro and macrofouling communities
Authors:
Dobretsov, Sergey V.; Abed, Raeid M M; Voolstra, Christian R. ( 0000-0003-4555-3795 )
Abstract:
The effect of substratum colour on the formation of micro- and macro fouling communities was investigated. Acrylic tiles, painted either black or white were covered with transparent sheets in order to ensure similar surface properties. All substrata were exposed to biofouling at 1 m depth for 40 d in the Marina Bandar al Rowdha (Muscat, Sea of Oman). Studies were conducted in 2010 over a time course of 5, 10 and 20 d, and in 2012 samples were collected at 7, 14 and 21 d. The densities of bacteria on the black and white substrata were similar with the exception of day 10, when the black substrata had a higher abundance than white ones. Pyrosequencing via 454 of 16S rRNA genes of bacteria from white and black substrata revealed that Alphaproteobacteria and Firmicutes were the dominant groups. SIMPER analysis demonstrated that bacterial phylotypes (uncultured Gammaproteobacteria, Actibacter, Gaetbulicola, Thalassobius and Silicibacter) and the diatoms (Navicula directa, Navicula sp. and Nitzschia sp.) contributed to the dissimilarities between communities developed on white and black substrata. At day 20, the highest amount of chlorophyll a was recorded in biofilms developed on black substrata. SIMPER analysis showed that Folliculina sp., Ulva sp. and Balanus amphitrite were the major macro fouling species that contributed to the dissimilarities between the communities formed on white and black substrata. Higher densities of these species were observed on black tiles. The results emphasise the effect of substratum colour on the formation of micro and macro fouling communities; substratum colour should to be taken into account in future studies. © 2013 Copyright Taylor and Francis Group, LLC.
KAUST Department:
Red Sea Research Center (RSRC); Biological and Environmental Sciences and Engineering (BESE) Division; Marine Science Program; Reef Genomics Lab
Publisher:
Informa UK Limited
Journal:
Biofouling
Issue Date:
Jul-2013
DOI:
10.1080/08927014.2013.784279
PubMed ID:
23697809
Type:
Article
ISSN:
08927014
Sponsors:
The authors acknowledge Dr Andrew N. Ostrovsky (Vienna University) for the identification of bryozoan species and Ms Annika Vaksmaa (Roskilde University) for her help with the experiments and data analysis. The authors thank Mr Khalid Al-Hashmi for his help in the identification of diatoms. 454 pyrosequencing was funded by King Abdullah University of Science and Technology (KAUST), Saudi Arabia. The authors wish to thank Dr Till Bayer for raw data collection and the Bioscience Core Lab at KAUST for preparation and sequencing of 454 libraries. The work of SD was supported by a Sultan Qaboos University internal grant IG/AGR/FISH/12/01 and by a HM Sultan Qaboos Research Trust Fund SR/AGR/FISH/10/01. SD acknowledges the help of Professor R. Coutinho (IEAPM, Arraial do Cabo, Brazil) and the programme science without frontiers (CNPq). RA would like to thank the Hanse-Wissenschaftskolleg (HWK), Institute for Advanced Study, Germany for their support.
Appears in Collections:
Articles; Red Sea Research Center (RSRC); Marine Science Program; Biological and Environmental Sciences and Engineering (BESE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorDobretsov, Sergey V.en
dc.contributor.authorAbed, Raeid M Men
dc.contributor.authorVoolstra, Christian R.en
dc.date.accessioned2015-08-03T11:12:23Zen
dc.date.available2015-08-03T11:12:23Zen
dc.date.issued2013-07en
dc.identifier.issn08927014en
dc.identifier.pmid23697809en
dc.identifier.doi10.1080/08927014.2013.784279en
dc.identifier.urihttp://hdl.handle.net/10754/562843en
dc.description.abstractThe effect of substratum colour on the formation of micro- and macro fouling communities was investigated. Acrylic tiles, painted either black or white were covered with transparent sheets in order to ensure similar surface properties. All substrata were exposed to biofouling at 1 m depth for 40 d in the Marina Bandar al Rowdha (Muscat, Sea of Oman). Studies were conducted in 2010 over a time course of 5, 10 and 20 d, and in 2012 samples were collected at 7, 14 and 21 d. The densities of bacteria on the black and white substrata were similar with the exception of day 10, when the black substrata had a higher abundance than white ones. Pyrosequencing via 454 of 16S rRNA genes of bacteria from white and black substrata revealed that Alphaproteobacteria and Firmicutes were the dominant groups. SIMPER analysis demonstrated that bacterial phylotypes (uncultured Gammaproteobacteria, Actibacter, Gaetbulicola, Thalassobius and Silicibacter) and the diatoms (Navicula directa, Navicula sp. and Nitzschia sp.) contributed to the dissimilarities between communities developed on white and black substrata. At day 20, the highest amount of chlorophyll a was recorded in biofilms developed on black substrata. SIMPER analysis showed that Folliculina sp., Ulva sp. and Balanus amphitrite were the major macro fouling species that contributed to the dissimilarities between the communities formed on white and black substrata. Higher densities of these species were observed on black tiles. The results emphasise the effect of substratum colour on the formation of micro and macro fouling communities; substratum colour should to be taken into account in future studies. © 2013 Copyright Taylor and Francis Group, LLC.en
dc.description.sponsorshipThe authors acknowledge Dr Andrew N. Ostrovsky (Vienna University) for the identification of bryozoan species and Ms Annika Vaksmaa (Roskilde University) for her help with the experiments and data analysis. The authors thank Mr Khalid Al-Hashmi for his help in the identification of diatoms. 454 pyrosequencing was funded by King Abdullah University of Science and Technology (KAUST), Saudi Arabia. The authors wish to thank Dr Till Bayer for raw data collection and the Bioscience Core Lab at KAUST for preparation and sequencing of 454 libraries. The work of SD was supported by a Sultan Qaboos University internal grant IG/AGR/FISH/12/01 and by a HM Sultan Qaboos Research Trust Fund SR/AGR/FISH/10/01. SD acknowledges the help of Professor R. Coutinho (IEAPM, Arraial do Cabo, Brazil) and the programme science without frontiers (CNPq). RA would like to thank the Hanse-Wissenschaftskolleg (HWK), Institute for Advanced Study, Germany for their support.en
dc.publisherInforma UK Limiteden
dc.subjectbacteriaen
dc.subjectbiofilmsen
dc.subjectbiofouling communityen
dc.subjectcolouren
dc.subjectdiatomsen
dc.subjectpyrosequencingen
dc.titleThe effect of surface colour on the formation of marine micro and macrofouling communitiesen
dc.typeArticleen
dc.contributor.departmentRed Sea Research Center (RSRC)en
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Divisionen
dc.contributor.departmentMarine Science Programen
dc.contributor.departmentReef Genomics Laben
dc.identifier.journalBiofoulingen
dc.contributor.institutionDepartment of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Omanen
dc.contributor.institutionDepartment of Biology, College of Science, Sultan Qaboos University, Muscat, Omanen
kaust.authorVoolstra, Christian R.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.