Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR

Handle URI:
http://hdl.handle.net/10754/562569
Title:
Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR
Authors:
Es-sebbar, Et-touhami; Bénilan, Yves; Farooq, Aamir ( 0000-0001-5296-2197 )
Abstract:
Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296-529K. The VUV measurements are performed between 115 and 205nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A'→X1A') around 150-205nm is determined to be 0.32±0.01.The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03. kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets. © 2012 Elsevier Ltd.
KAUST Department:
Clean Combustion Research Center; Physical Sciences and Engineering (PSE) Division; Mechanical Engineering Program; Chemical Kinetics & Laser Sensors Laboratory
Publisher:
Elsevier
Journal:
Journal of Quantitative Spectroscopy and Radiative Transfer
Issue Date:
Jan-2013
DOI:
10.1016/j.jqsrt.2012.09.014
Type:
Article
ISSN:
00224073
Sponsors:
The authors wish to thank Gerd Reichard for his assistance during the synchrotron radiation experiments and Hans-Werner Jochims for judicious advice concerning the VUV spectroscopy. We acknowledge the financial support of the European Commission program "Access to Research Infrastructures" for providing access to the synchrotron facility BESSY in Berlin, Germany. We also acknowledge the financial support of the French program PNP (INSUCNRS) and the travel support provided by University Paris-Est Creteil (UPEC).
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

Full metadata record

DC FieldValue Language
dc.contributor.authorEs-sebbar, Et-touhamien
dc.contributor.authorBénilan, Yvesen
dc.contributor.authorFarooq, Aamiren
dc.date.accessioned2015-08-03T10:43:09Zen
dc.date.available2015-08-03T10:43:09Zen
dc.date.issued2013-01en
dc.identifier.issn00224073en
dc.identifier.doi10.1016/j.jqsrt.2012.09.014en
dc.identifier.urihttp://hdl.handle.net/10754/562569en
dc.description.abstractVacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296-529K. The VUV measurements are performed between 115 and 205nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A'→X1A') around 150-205nm is determined to be 0.32±0.01.The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03. kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets. © 2012 Elsevier Ltd.en
dc.description.sponsorshipThe authors wish to thank Gerd Reichard for his assistance during the synchrotron radiation experiments and Hans-Werner Jochims for judicious advice concerning the VUV spectroscopy. We acknowledge the financial support of the European Commission program "Access to Research Infrastructures" for providing access to the synchrotron facility BESSY in Berlin, Germany. We also acknowledge the financial support of the French program PNP (INSUCNRS) and the travel support provided by University Paris-Est Creteil (UPEC).en
dc.publisherElsevieren
dc.subject1-Buteneen
dc.subjectBand strengthen
dc.subjectEnthalpy differenceen
dc.subjectIR spectraen
dc.subjectOscillator strengthen
dc.subjectVUV spectraen
dc.titleTemperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IRen
dc.typeArticleen
dc.contributor.departmentClean Combustion Research Centeren
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.contributor.departmentMechanical Engineering Programen
dc.contributor.departmentChemical Kinetics & Laser Sensors Laboratoryen
dc.identifier.journalJournal of Quantitative Spectroscopy and Radiative Transferen
dc.contributor.institutionLaboratoire Interuniversitaire des Systèmes Atmosphériques, UMR 7583 du CNRS, Universités Paris Est Créteil et Paris Diderot, Franceen
kaust.authorEs-sebbar, Et-touhamien
kaust.authorFarooq, Aamiren
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.