A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

Handle URI:
http://hdl.handle.net/10754/562406
Title:
A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers
Authors:
Khan, Kamran; El Sayed, Tamer S.
Abstract:
We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material's properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division; Physical Sciences and Engineering (PSE) Division
Publisher:
Springer Nature
Journal:
Acta Mechanica
Issue Date:
9-Nov-2012
DOI:
10.1007/s00707-012-0760-7
Type:
Article
ISSN:
00015970
Sponsors:
This work was funded by the KAUST baseline fund. The authors would like to thank Dr. Amir Siddiq for the valuable discussions on integrating constitutive models into ABAQUS. The authors would also like to thank the Research Computing team and KAUST IT for their technical support.
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorKhan, Kamranen
dc.contributor.authorEl Sayed, Tamer S.en
dc.date.accessioned2015-08-03T10:37:04Zen
dc.date.available2015-08-03T10:37:04Zen
dc.date.issued2012-11-09en
dc.identifier.issn00015970en
dc.identifier.doi10.1007/s00707-012-0760-7en
dc.identifier.urihttp://hdl.handle.net/10754/562406en
dc.description.abstractWe formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material's properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.en
dc.description.sponsorshipThis work was funded by the KAUST baseline fund. The authors would like to thank Dr. Amir Siddiq for the valuable discussions on integrating constitutive models into ABAQUS. The authors would also like to thank the Research Computing team and KAUST IT for their technical support.en
dc.publisherSpringer Natureen
dc.titleA phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymersen
dc.typeArticleen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.identifier.journalActa Mechanicaen
kaust.authorKhan, Kamranen
kaust.authorEl Sayed, Tamer S.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.